432 resultados para Raman generation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips (NCNTPs) are synthesized by plasma-enhanced hot filament chemical vapor deposition from the hydrogen, methane, and nitrogen gas mixtures with different flow rate ratios of hydrogen to nitrogen. The morphological, structural, compositional, and electron field emission (EFE) properties of the NCNTPs were investigated by field emissionscanning electron microscopy, Raman spectroscopy, x ray photoelectron spectroscopy, and EFE high-vacuum system. It is shown that the NCNTPs deposited at an intermediate flow rate ratio of hydrogen to nitrogen feature the best size/shape and pattern uniformity, the highest nanotip density, the highest nitrogen concentration, as well as the best electron field emission performance. Several factors that come into play along with the nitrogen incorporation, such as the combined effect of the plasma sputtering and etching, the transition of sp 3carbon clusters to sp 2carbon clusters, the increase of the size of the sp 2 clusters, as well as the reduction of the work function, have been examined to interpret these experimental findings. Our results are highly relevant to the development of the next generation electron field emitters, flat panel displays, atomic force microscope probes, and several other advanced applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron field emission (EFE) properties of nitrogenated carbon nanotips (NCNTPs) were studied under high-vacuum conditions. The NCNTPs were prepared in a plasma-assisted hot filament chemical vapor deposition system using CH4 and N2 as the carbon and nitrogen sources, respectively. The work functions of NCNTPs were measured using x-ray photoelectron spectroscopy. The morphological and structural properties of NCNTPs were studied by field emission scanning electron microscopy, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. The field enhancement factors of NCNTPs were calculated using relevant EFE models based on the Fowler-Nordheim approximation. Analytical characterization and modeling results were used to establish the relations between the EFE properties of NCNTPs and their morphology, structure, and composition. It is shown that the EFE properties of NCNTPs can be enhanced by the reduction of oxygen termination on the surface as well as by increasing the ratio of the NCNTP height to the radius of curvature at its top. These results also suggest that a significant amount of electrons is emitted from other surface areas besides the NCNTP tops, contrary to the common belief. The outcomes of this study advance our knowledge on the electron emission properties of carbonnanomaterials and contribute to the development of the next-generation of advanced applications in the fields of micro- and opto-electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanophase nc-Si/a-SiC films that contain Si quantum dots (QDs) embedded in an amorphous SiC matrix were deposited on single-crystal silicon substrates using inductively coupled plasma-assisted chemical vapor deposition from the reactive silane and methane precursor gases diluted with hydrogen at a substrate temperature of 200 °C. The effect of the hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen-to-silane plus methane gases), ranging from 0 to 10.0, on the morphological, structural, and compositional properties of the deposited films, is extensively and systematically studied by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, and X-ray photoelectron spectroscopy. Effective nanophase segregation at a low hydrogen dilution ratio of 4.0 leads to the formation of highly uniform Si QDs embedded in the amorphous SiC matrix. It is also shown that with the increase of X, the crystallinity degree and the crystallite size increase while the carbon content and the growth rate decrease. The obtained experimental results are explained in terms of the effect of hydrogen dilution on the nucleation and growth processes of the Si QDs in the high-density plasmas. These results are highly relevant to the development of next-generation photovoltaic solar cells, light-emitting diodes, thin-film transistors, and other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotips with different structures were synthesized by plasma-enhanced hot filament chemical vapor deposition and plasma-enhanced chemical vapor deposition using different deposition conditions, and they were investigated by scanning electron microscopy and Raman spectroscopy. The results indicate that the photoluminescence background of the Raman spectra is different for different carbon nanotips. Additionally, the Raman spectra of the carbon nanotips synthesized using nitrogen-containing gas precursors show a peak located at about 2120 cm-1 besides the common D and G peaks. The observed difference in the photoluminescence background is related to the growth mechanisms, structural properties, and surface morphology of a-C:H and a-C:H:N nanotips, in particular, the sizes of the emissive tips.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of comprehensive experimental studies of the operation, stability, and plasma parameters of the low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal oscillating rf current are reported. The rf plasma is generated by using a custom-designed configuration of the internal rf coil that comprises two perpendicular sets of eight currents in each direction. Various diagnostic tools, such as magnetic probes, optical emission spectroscopy, and an rf-compensated Langmuir probe were used to investigate the electromagnetic, optical, and global properties of the argon plasma in wide ranges of the applied rf power and gas feedstock pressure. It is found that the uniformity of the electromagnetic field inside the plasma reactor is improved as compared to the conventional sources of inductively coupled plasmas with the external flat coil configuration. A reasonable agreement between the experimental data and computed electromagnetic field topography inside the chamber is reported. The Langmuir probe measurements reveal that the spatial profiles of the electron density, the effective electron temperature, plasma potential, and electron energy distribution/probability functions feature a high degree of the radial and axial uniformity and a weak azimuthal dependence, which is consistent with the earlier theoretical predictions. As the input rf power increases, the azimuthal dependence of the global plasma parameters vanishes. The obtained results demonstrate that by introducing the internal oscillated rf currents one can noticeably improve the uniformity of electromagnetic field topography, rf power deposition, and the plasma density in the reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon thin films with a variable content of nanocrystalline phase were deposited on single-crystal silicon and glass substrates by inductively coupled plasma-assisted chemical vapor deposition using a silane precursor without any hydrogen dilution in the low substrate temperature range from 100 to 300 °C. The structural and optical properties of the deposited films are systematically investigated by Raman spectroscopy, x-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/vis spectroscopy, scanning electron microscopy and high-resolution transmission electron microscopy. It is shown that the structure of the silicon thin films evolves from the purely amorphous phase to the nanocrystalline phase when the substrate temperature is increased from 100 to 150 °C. It is found that the variations of the crystalline fraction fc, bonded hydrogen content CH, optical bandgap ETauc, film microstructure and growth rate Rd are closely related to the substrate temperature. In particular, at a substrate temperature of 300 °C, the nanocrystalline Si thin films of our interest feature a high growth rate of 1.63nms-1, a low hydrogen content of 4.0at.%, a high crystalline fraction of 69.1%, a low optical bandgap of 1.55eV and an almost vertically aligned columnar structure with a mean grain size of approximately 10nm. It is also shown that the low-temperature synthesis of nanocrystalline Si thin films without any hydrogen dilution is attributed to the outstanding dissociation ability of the high-density inductively coupled plasmas and effective plasma-surface interactions during the growth process. Our results offer a highly effective yet simple and environmentally friendly technique to synthesize high-quality nanocrystalline Si films, vitally needed for the development of new-generation solar cells and other emerging nanotechnologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of resonant generation of the second harmonic of the surface wave, propagating along the external magnetic field at the plasma-metal boundary is considered. The periodic process of the energy exchange between the first and the second harmonics of the wave is investigated as well. It is shown that the process under study is periodic one. The analytical expressions are obtained and numerical estimations are presented for characteristic time of nonlinear energy exchange. The self-action effect of main frequency wave is account for harmonics interaction. It is shown that the effect leads to nonlinear phenomena attenuation, which expresses in narrowing possible value interval of harmonics amplitudes during energy exchange process and in increasing the nonlinear interaction time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear process is considered of the surface wave third harmonics generation in a slowing-down semiconductor-metal structure. The process is conditioned by non-parabolicity of the charge carrier dispersion law. It is shown that in narrow-gap semiconducting materials it is necessary to account for the process together with the surface wave second harmonics generation conditioned by nonlinearity of quasi-hydrodynamics and the Maxwell equations. The conclusion is made that the third harmonies amplitude in narrow-gap semiconductors may exceed substantially the signal amplitude at the 3w frequency in a gas plasma and be of the same order with the surface waves second harmonies amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the process of the resonant second harmonics generation of the submillimeter (SM), which is of interest for design of the semiconductor frequency multipliers is evaluated. Particularly, the possibility to use the semiconductor superlattice-metal structures as an effective second harmonics generator is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a modulation and controller design method for paralleled Z-source inverter systems applicable for alternative energy sources like solar cells, fuel cells, or variablespeed wind turbines with front-end diode rectifiers. A modulation scheme is designed based on simple shoot-through principle with interleaved carriers to give enhanced ripple reduction in the system. Subsequently, a control method is proposed to equalize the amount of power injected by the inverters in the grid-connected mode and also to provide reliable supply to sensitive loads onsite in the islanding mode. The modulation and controlling methods are proposed to have modular independence so that redundancy, maintainability, and improved reliability of supply can be achieved. The performance of the proposed paralleled Z-source inverter configuration is validated with simulations carried out using Matlab/Simulink/Powersim. Moreover, a prototype is built in the laboratory to obtain the experimental verifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and development of process-aware information systems is often supported by specifying requirements as business process models. Although this approach is generally accepted as an effective strategy, it remains a fundamental challenge to adequately validate these models given the diverging skill set of domain experts and system analysts. As domain experts often do not feel confident in judging the correctness and completeness of process models that system analysts create, the validation often has to regress to a discourse using natural language. In order to support such a discourse appropriately, so-called verbalization techniques have been defined for different types of conceptual models. However, there is currently no sophisticated technique available that is capable of generating natural-looking text from process models. In this paper, we address this research gap and propose a technique for generating natural language texts from business process models. A comparison with manually created process descriptions demonstrates that the generated texts are superior in terms of completeness, structure, and linguistic complexity. An evaluation with users further demonstrates that the texts are very understandable and effectively allow the reader to infer the process model semantics. Hence, the generated texts represent a useful input for process model validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Crypto’95, Micali and Sidney proposed a method for shared generation of a pseudo-random function f(·) among n players in such a way that for all the inputs x, any u players can compute f(x) while t or fewer players fail to do so, where 0⩽tgeneration of pseudo-random function using cumulative maps. We demonstrate that the Micali–Sidney scheme is a special case of this general construction. We then derive an upper and a lower bound for d. Finally we give a simple, yet efficient, approximation greedy algorithm for generating the secret seeds S in which d is close to the optimum by a factor of at most u ln 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Crypto’95, Micali and Sidney proposed a method for shared generation of a pseudo-random function f(·) among n players in such a way that for all the inputs x, any u players can compute f(x) while t or fewer players fail to do so, where 0 ≤ t < u ≤ n. The idea behind the Micali-Sidney scheme is to generate and distribute secret seeds S = s1, . . . , sd of a poly-random collection of functions, among the n players, each player gets a subset of S, in such a way that any u players together hold all the secret seeds in S while any t or fewer players will lack at least one element from S. The pseudo-random function is then computed as where f s i (·)’s are poly-random functions. One question raised by Micali and Sidney is how to distribute the secret seeds satisfying the above condition such that the number of seeds, d, is as small as possible. In this paper, we continue the work of Micali and Sidney. We first provide a general framework for shared generation of pseudo-random function using cumulative maps. We demonstrate that the Micali-Sidney scheme is a special case of this general construction.We then derive an upper and a lower bound for d. Finally we give a simple, yet efficient, approximation greedy algorithm for generating the secret seeds S in which d is close to the optimum by a factor of at most u ln 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Next Generation Sequencing (NGS) has revolutionised molecular biology, resulting in an explosion of data sets and an increasing role in clinical practice. Such applications necessarily require rapid identification of the organism as a prelude to annotation and further analysis. NGS data consist of a substantial number of short sequence reads, given context through downstream assembly and annotation, a process requiring reads consistent with the assumed species or species group. Highly accurate results have been obtained for restricted sets using SVM classifiers, but such methods are difficult to parallelise and success depends on careful attention to feature selection. This work examines the problem at very large scale, using a mix of synthetic and real data with a view to determining the overall structure of the problem and the effectiveness of parallel ensembles of simpler classifiers (principally random forests) in addressing the challenges of large scale genomics.