443 resultados para Procedure for Multiple Classifications
Resumo:
In Lamb v State of Queensland [2003] QDC 003 McGill DCJ considered an application under s43 of the Personal Injuries Proceedings Act 2002. That provision permits the court to give a claimant leave to start a proceeding notwithstanding non-compliance with part 1 of chapter two of the Act, "if the court is satisfied there is an urgent need to start the proceeding."
Resumo:
In Mitchell Contractors Pty Ltd v Townsville-Thuringowa Water Supply Joint Board [2004] QSC 329, Douglas J considered the issue of broad significance for litigation practitioners of whether draft expert reports fall within the description in r212(2) of the Uniform Civil Procedure Rules 1999 (Qld) of documents "consisting of a statement or report of an expert" and are therefore not privileged from disclosure.
Resumo:
In Jones v Millward [2005]QCA76 the Queensland Court of Appeal held that an offer to settle under the UCPR will not attract a costs benefit unless it involves some element of compromise
Resumo:
In Smit v Chan [2001] QSC 493 (Supreme Court of Queensland, S1233 of 1995, Mullins J, 21.12.2001) the sixth defendant successfully obtained an order that a complex medical negligence action be tried without a jury. This was the first application to be decided under r474 of UCPR 1999, and the decision is a significant precedent for defendants in similar cases who want to avoid the unpredictability of outcome and the inflated damages awards sometimes associated with jury trials.
Resumo:
In Patterson v Cohen [2005] NSWSC 635 Hamilton J examined the authorities in relation to what are commonly called 'fruits of litigation' liens. The judgment provides a very useful summary of the principles which apply.
Resumo:
In Amos v Brisbane City Council [2005] QCA 433 the Queensland Court of Appeal was called upon to determine the scope of s56 of the Personal Injuries Proceedings Act 2002. The decision makes it clear that the section does not provide a complete code governing awards of damages and does not deprive the court of power to award costs against a plaintiff who fails to succeed on liability.
Resumo:
Protocols for bioassessment often relate changes in summary metrics that describe aspects of biotic assemblage structure and function to environmental stress. Biotic assessment using multimetric indices now forms the basis for setting regulatory standards for stream quality and a range of other goals related to water resource management in the USA and elsewhere. Biotic metrics are typically interpreted with reference to the expected natural state to evaluate whether a site is degraded. It is critical that natural variation in biotic metrics along environmental gradients is adequately accounted for, in order to quantify human disturbance-induced change. A common approach used in the IBI is to examine scatter plots of variation in a given metric along a single stream size surrogate and a fit a line (drawn by eye) to form the upper bound, and hence define the maximum likely value of a given metric in a site of a given environmental characteristic (termed the 'maximum species richness line' - MSRL). In this paper we examine whether the use of a single environmental descriptor and the MSRL is appropriate for defining the reference condition for a biotic metric (fish species richness) and for detecting human disturbance gradients in rivers of south-eastern Queensland, Australia. We compare the accuracy and precision of the MSRL approach based on single environmental predictors, with three regression-based prediction methods (Simple Linear Regression, Generalised Linear Modelling and Regression Tree modelling) that use (either singly or in combination) a set of landscape and local scale environmental variables as predictors of species richness. We compared the frequency of classification errors from each method against set biocriteria and contrast the ability of each method to accurately reflect human disturbance gradients at a large set of test sites. The results of this study suggest that the MSRL based upon variation in a single environmental descriptor could not accurately predict species richness at minimally disturbed sites when compared with SLR's based on equivalent environmental variables. Regression-based modelling incorporating multiple environmental variables as predictors more accurately explained natural variation in species richness than did simple models using single environmental predictors. Prediction error arising from the MSRL was substantially higher than for the regression methods and led to an increased frequency of Type I errors (incorrectly classing a site as disturbed). We suggest that problems with the MSRL arise from the inherent scoring procedure used and that it is limited to predicting variation in the dependent variable along a single environmental gradient.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
In Inglis v Connell [2003] QDC 029 the court considered s6(3) of the Personal Injuries Proceedings Act 2002 in relation to the application of the Act. The conclusion reached was that the provision should be interpreted as providing that the requirements of the Act do not apply in respect of personal injury the subject of any proceeding commenced before June 18, 2002.
Resumo:
In McCoombes v Curragh Queensland Mining Ltd [2001] QDC 142 the court considered a number of significant issues in relation to assessments of costs under the Uniform Civil Procedure Rules 1999 (Qld). The Court of Appeal subsequently declined an application for leave to appeal the decision under s118(3) of the District Court Act 1967 (McCoombes v Curragh Queensland Mining Ltd [2001] QCA 379. The judgment in the District Court, and on some matters the subsequent observations in the Court of Appeal, provide clarification in respect of many issues relating the assessment of costs under the UCPR.
Resumo:
This paper introduces a straightforward method to asymptotically solve a variety of initial and boundary value problems for singularly perturbed ordinary differential equations whose solution structure can be anticipated. The approach is simpler than conventional methods, including those based on asymptotic matching or on eliminating secular terms. © 2010 by the Massachusetts Institute of Technology.
Resumo:
NLS is a stream cipher which was submitted to the eSTREAM project. A linear distinguishing attack against NLS was presented by Cho and Pieprzyk, which was called Crossword Puzzle (CP) attack. NLSv2 is a tweak version of NLS which aims mainly at avoiding the CP attack. In this paper, a new distinguishing attack against NLSv2 is presented. The attack exploits high correlation amongst neighboring bits of the cipher. The paper first shows that the modular addition preserves pairwise correlations as demonstrated by existence of linear approximations with large biases. Next, it shows how to combine these results with the existence of high correlation between bits 29 and 30 of the S-box to obtain a distinguisher whose bias is around 2^−37. Consequently, we claim that NLSv2 is distinguishable from a random cipher after observing around 2^74 keystream words.
Resumo:
The value of information technology (IT) is often realized when continuously being used after users’ initial acceptance. However, previous research on continuing IT usage is limited for dismissing the importance of mental goals in directing users’ behaviors and for inadequately accommodating the group context of users. This in-progress paper offers a synthesis of several literature to conceptualize continuing IT usage as multilevel constructs and to view IT usage behavior as directed and energized by a set of mental goals. Drawing from the self-regulation theory in the social psychology, this paper proposes a process model, positioning continuing IT usage as multiple-goal pursuit. An agent-based modeling approach is suggested to further explore causal and analytical implications of the proposed process model.
Resumo:
The ability to build high-fidelity 3D representations of the environment from sensor data is critical for autonomous robots. Multi-sensor data fusion allows for more complete and accurate representations. Furthermore, using distinct sensing modalities (i.e. sensors using a different physical process and/or operating at different electromagnetic frequencies) usually leads to more reliable perception, especially in challenging environments, as modalities may complement each other. However, they may react differently to certain materials or environmental conditions, leading to catastrophic fusion. In this paper, we propose a new method to reliably fuse data from multiple sensing modalities, including in situations where they detect different targets. We first compute distinct continuous surface representations for each sensing modality, with uncertainty, using Gaussian Process Implicit Surfaces (GPIS). Second, we perform a local consistency test between these representations, to separate consistent data (i.e. data corresponding to the detection of the same target by the sensors) from inconsistent data. The consistent data can then be fused together, using another GPIS process, and the rest of the data can be combined as appropriate. The approach is first validated using synthetic data. We then demonstrate its benefit using a mobile robot, equipped with a laser scanner and a radar, which operates in an outdoor environment in the presence of large clouds of airborne dust and smoke.
Resumo:
This (seat) attribute target list and Design for Comfort taxonomy report is based on the literature review report (C3-21, Milestone 1), which specified different areas (factors) with specific influence on automotive seat comfort. The attribute target list summarizes seat factors established in the literature review (Figure 1) and subsumes detailed attributes derived from the literature findings within these factors/classes. The attribute target list (Milestone 2) then provides the basis for the “Design for Comfort” taxonomy (Milestone 3) and helps the project develop target settings (values) that will be measured during the testing phase of the C3-21 project. The attribute target list will become the core technical description of seat attributes, to be incorporated into the final comfort procedure that will be developed. The Attribute Target List and Design for Comfort Taxonomy complete the target definition process. They specify the context, markets and application (vehicle classes) for seat development. As multiple markets are addressed, the target setting requires flexibility of variables to accommodate the selected customer range. These ranges will be consecutively filled with data in forthcoming studies. The taxonomy includes how and where the targets are derived, reference points and standards, engineering and subjective data from previous studies as well as literature findings. The comfort parameters are ranked to identify which targets, variables or metrics have the biggest influence on comfort. Comfort areas included are seat kinematics (adjustability), seat geometry and pressure distribution (static comfort), seat thermal behavior and noise/vibration transmissibility (cruise comfort) and eventually material properties, design and features (seat harmony). Data from previous studies is fine tuned and will be validated in the nominated contexts and markets in follow-up dedicated studies.