400 resultados para Photonic Device Applications
Resumo:
Developments in evaporator cleaning have accelerated in the past 10 years as a result of an extended period of research into scale formation and scale composition. Chemical cleaning still provides the most cost effective method of cleaning the evaporators. The paper describes a system that was designed to obtain on-line samples of evaporator scale negating the need to open up hot evaporator vessels for scale collection. This system was successfully implemented in a number of evaporators at a sugar mill. This paper also describes a recent experience in a sugar factory in which the cleaning procedure was slightly modified, resulting in effective removal of intractable scale.
Resumo:
Developments in evaporator cleaning have accelerated in the past 10 years as a result of an extended period of research into scale formation and scale composition. Chemical cleaning still provides the most cost effective method of cleaning the evaporators. The paper describes a system that was designed to obtain on-line samples of evaporator scale negating the need to open up hot evaporator vessels for scale collection. This system was successfully implemented in a number of evaporators at a sugar mill. This paper also describes a recent experience in a sugar factory in which the cleaning procedure was slightly modified resulting in effective removal of intractable scale.
Resumo:
Fungi are eukaryotic organisms and considered to be less adaptable to extreme environments when compared to bacteria. While there are no thermophilic microfungi in a strict sense, some fungi have adapted to life in the cold. Cold-active microfungi have been isolated from the Antarctic and their enzyme activities explored with a view to finding new candidates for industrial use. On another front, environmental pollution by petroleum products in the Antarctic has led to a search for, and the subsequent discovery of, fungal isolates capable of degrading hydrocarbons. The work has paved the way to developing a bioremedial approach to containing this type of contamination in cold climates. Here we discuss our efforts to map the capability of Antarctic microfungi to degrade oil and also introduce a novel cold-active fungal lipase enzyme.
Resumo:
Background Kiwifruit (Actinidia spp.) are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs). Results The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha) and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons). Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases) and pathways (terpenoid biosynthesis) is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. Conclusion This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia.
Resumo:
This thesis developed new search engine models that elicit the meaning behind the words found in documents and queries, rather than simply matching keywords. These new models were applied to searching medical records: an area where search is particularly challenging yet can have significant benefits to our society.
Resumo:
Background Rapid developments in technology have encouraged the use of smartphones in physical activity research, although little is known regarding their effectiveness as measurement and intervention tools. Objective This study systematically reviewed evidence on smartphones and their viability for measuring and influencing physical activity. Data Sources Research articles were identified in September 2013 by literature searches in Web of Knowledge, PubMed, PsycINFO, EBSCO, and ScienceDirect. Study Selection The search was restricted using the terms (physical activity OR exercise OR fitness) AND (smartphone* OR mobile phone* OR cell phone*) AND (measurement OR intervention). Reviewed articles were required to be published in international academic peer-reviewed journals, or in full text from international scientific conferences, and focused on measuring physical activity through smartphone processing data and influencing people to be more active through smartphone applications. Study Appraisal and Synthesis Methods Two reviewers independently performed the selection of articles and examined titles and abstracts to exclude those out of scope. Data on study characteristics, technologies used to objectively measure physical activity, strategies applied to influence activity; and the main study findings were extracted and reported. Results A total of 26 articles (with the first published in 2007) met inclusion criteria. All studies were conducted in highly economically advantaged countries; 12 articles focused on special populations (e.g. obese patients). Studies measured physical activity using native mobile features, and/or an external device linked to an application. Measurement accuracy ranged from 52 to 100 % (n = 10 studies). A total of 17 articles implemented and evaluated an intervention. Smartphone strategies to influence physical activity tended to be ad hoc, rather than theory-based approaches; physical activity profiles, goal setting, real-time feedback, social support networking, and online expert consultation were identified as the most useful strategies to encourage physical activity change. Only five studies assessed physical activity intervention effects; all used step counts as the outcome measure. Four studies (three prepost and one comparative) reported physical activity increases (1242 participants, 8001,104 steps/day, 2 weeks6 months), and one case-control study reported physical activity maintenance (n = 200 participants; >10,000 steps/day) over 3 months. Limitations Smartphone use is a relatively new field of study in physical activity research, and consequently the evidence base is emerging. Conclusions Few studies identified in this review considered the validity of phone-based assessment of physical activity. Those that did report on measurement properties found average-to-excellent levels of accuracy for different behaviors. The range of novel and engaging intervention strategies used by smartphones, and user perceptions on their usefulness and viability, highlights the potential such technology has for physical activity promotion. However, intervention effects reported in the extant literature are modest at best, and future studies need to utilize randomized controlled trial research designs, larger sample sizes, and longer study periods to better explore the physical activity measurement and intervention capabilities of smartphones.
Resumo:
Smartphone technology provides free or inexpensive access to mental health and wellbeing resources. As a result the use of mobile applications for these purposes has increased significantly in recent years. Yet, there is currently no app quality assessment alternative to the popular star-ratings, which are often unreliable. This presentation describes the development of the Mobile Application Rating Scale (MARS) a new measure for classifying and rating the quality of mobile applications. A review of existing literature on app and web quality identified 25 published papers, conference proceedings, and online resources (published since 1999), which identified 372 explicit quality criteria. Qualitative analysis identified five broad categories of app quality rating criteria: engagement, functionality, aesthetics, information quality, and overall satisfaction, which were refined into the 23-item MARS. Independent ratings of 50 randomly selected mental health and wellbeing mobile apps indicated the MARS had excellent levels of internal consistency ( = 0.92) and inter-rater reliability (ICC = 0.85). The MARS provides practitioners and researchers with an easy-to-use, simple, objective and reliable tool for assessing mobile app quality. It also provides mHealth professionals with a checklist for the design and development of high quality apps.
Resumo:
This thesis investigates the fusion of 3D visual information with 2D image cues to provide 3D semantic maps of large-scale environments in which a robot traverses for robotic applications. A major theme of this thesis was to exploit the availability of 3D information acquired from robot sensors to improve upon 2D object classification alone. The proposed methods have been evaluated on several indoor and outdoor datasets collected from mobile robotic platforms including a quadcopter and ground vehicle covering several kilometres of urban roads.
Resumo:
Despite significant investment in school one-to-one device programs, little is known about which aspects of program implementation work and why. Through a comparison of two implementation models, adopter-diffusion and saturation, and using existing data from the One Laptop per Child Australia laptop program, we explored how factors of implementation may affect device diffusion, learning and educational outcomes, and program sustainability in schools. In this article we argue that more focused research into implementation of one-to-one device programs, moving beyond comparisons of devices versus without devices, is needed to provide reliable data to inform future program funding and advance this area of research.
Resumo:
Purpose The purpose of this study was to evaluate the validity of the CSA activity monitor as a measure of children's physical activity using energy expenditure (EE) as a criterion measure. Methods Thirty subjects aged 10 to 14 performed three 5-min treadmill bouts at 3, 4, and 6 mph, respectively. While on the treadmill, subjects wore CSA (WAM 7164) activity monitors on the right and left hips. (V) over dot O-2 was monitored continuously by an automated system. EE was determined by multiplying the average (V) over dot O-2 by the caloric equivalent of the mean respiratory exchange ratio. Results Repeated measures ANOVA indicated that both CSA monitors were sensitive to changes in treadmill speed. Mean activity counts from each CSA unit were not significantly different and the intraclass reliability coefficient for the two CSA units across all speeds was 0.87. Activity counts from both CSA units were strongly correlated with EE (r = 0.86 and 0.87, P < 0.001). An EE prediction equation was developed from 20 randomly selected subjects and cross-validated on the remaining 10. The equation predicted mean EE within 0.01 kcal.min(-1). The correlation between actual and predicted values was 0.93 (P < 0.01) and the SEE was 0.93 kcal.min(-1). Conclusion These data indicate that the CSA monitor is a valid and reliable tool for quantifying treadmill walking and running in children.
Resumo:
The continuum model is a key paradigm describing the behavior of electromechanical transients in power systems. In the past two decades, much research work has been done on applying the continuum model to analyze the electromechanical wave in power systems. In this work, the uniform and non-uniform continuum models are first briefly described, and some explanations borrowing concepts and tools from other fields are given. Then, the existing approaches of investigating the resulting wave equations are summarized. An application named the zero reflection controller based on the idea of the wave equations is next presented.
Resumo:
This project is a breakthrough in developing new scientific approaches for the design, development and evaluation of inter-vehicle communications, networking and positioning systems as part of Cooperative Intelligent Transportation Systems ensuring the safety of both roads and rail networks. This research focused on the elicitation, specification, analysis and validation of requirements for Vehicle-to-Vehicle communications and networking, and Vehicle-to-Vehicle positioning, which are accomplished with the research platform developed for this study. A number of mathematical models for communications, networking and positioning were developed from which simulations and field experiments were conducted to evaluate the overall performance of the platform. The outcomes of this research significantly contribute to improving the performance of the communications and positioning components of Cooperative Intelligent Transportation Systems.
Resumo:
This thesis is a study of new design methods for allowing evolutionary algorithms to be more effectively utilised in aerospace optimisation applications where computation needs are high and computation platform space may be restrictive. It examines the applicability of special hardware computational platforms known as field programmable gate arrays and shows that with the right implementation methods they can offer significant benefits. This research is a step forward towards the advancement of efficient and highly automated aircraft systems for meeting compact physical constraints in aerospace platforms and providing effective performance speedups over traditional methods.
Resumo:
Aggressive behavior at the steering wheel has been indicated as a contributing factor in a majority of crashes and anger has been compared to alcohol impairment in terms of probability to cause a crash. It has been shown that being in a state of anger or excitement while driving can decrease the drivers performances. . This paper reports the evaluation of 6 novel design alternatives of In-Vehicle Information Systems (IVIS) aimed at mitigating driver aggression. Each application presented was designed to tackle the following contributing factors to driver aggression: competitiveness, anonymity, territoriality, stress as well as social and emotional isolation. The 6 applications were simulated using computer vision algorithm to automatically overlay the real traffic conditions with Head-Up Display visualizations. Two applications emerged over the others from participants evaluation: shared music combined the known calming effect of music with the sense of sympathy and intimacy caused by hearing other drivers music. The Shared Snapshot application provided an immediate gratification and was evaluated as a potential prevention of roadside quarrels. The paper presents Theoretical foundation, participants evaluations, implications and limitations of the study.