394 resultados para OH^-
Resumo:
The reactions of distonic 4-(N, N, N-trimethylammonium)-2-methylphenyl and 5-(N, N, N-trimethylammonium)-2-methylphenyl radical cations (m/z 149) with O-2 are studied in the gas phase using ion-trap mass spectrometry. Photodissociation (PD) of halogenated precursors gives rise to the target distonic charge-tagged methylphenyl radical whereas collision-induced dissociation (CID) is found to produce unreactive radical ions. The PD generated distonic radicals, however, react rapidly with O-2 to form \[M + O2](center dot+) and \[M + O-2 - OH](center dot+) ions, detected at m/z 181 and m/z 164, respectively. Quantum chemical calculations using G3SX(MP3) and M06-2X theories are deployed to examine key decomposition pathways of the 5-(N, N, N-trimethylammonium)-2-methylphenylperoxyl radical and rationalise the observed product ions. The prevailing product mechanism involves a 1,5- H shift in the peroxyl radical forming a QOOH-type intermediate that subsequently eliminates (OH)-O-center dot to yield charge-tagged 2-quinone methide. Our study suggests that the analogous process should occur for the neutral methylphenyl + O-2 reaction, thus serving as a plausible source of (OH)-O-center dot radicals in combustion environments. Grants: ARC/DP0986738, ARC/DP130100862
Resumo:
Fatty acids are long-chain carboxylic acids that readily produce \[M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely \[M - 2H + (FeCl)-Cl-II](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., \[M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an \[M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired \[M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the \[M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of \[M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.
Resumo:
We have studied the borate mineral rhodizite (K, Cs)Al4Be4(B, Be)12O28 using a combination of DEM with EDX and vibrational spectroscopic techniques. The mineral occurs as colorless, gray, yellow to white crystals in the triclinic crystal system. The studied sample is from the Antandrokomby Mine, Sahatany valley, Madagascar. The mineral is prized as a semi-precious jewel. Semi-quantitative chemical composition shows a Al, Ca, borate with minor amounts of K, Mg and Cs. The mineral has a characteristic borate Raman spectrum and bands are assigned to the stretching and bending modes of B, Be and Al. No Raman bands in the OH stretching region were observed.
Resumo:
This investigation used a combination of techniques, such as X-ray diffraction, inductively coupled plasma optical emission spectroscopy and infrared spectroscopy, to determine the dissolution mechanisms of the Bayer precipitate and the associated rate of dissolution in acetic, citric and oxalic acid environments. The Bayer precipitate is a mixture of hydrotalcite, calcium carbonate and sodium chloride that forms during the seawater neutralisation of Bayer liquors (waste residue of the alumina industry). The dissolution rate of a Bayer precipitate is found to be dependent on (1) the strength of the organic acid and (2) the number of donating H+ ions. The dissolution mechanism for a Bayer precipitate consists of several steps involving: (1) the dissolution of CaCO3, (2) formation of whewellite (calcium oxalate) when oxalic acid is used and (3) multiple dissolution steps for hydrotalcite that are highly dependent on the pH of solution. The decomposition of the Al–OH hydrotalcite layers resulted in the immediate formation of Al(OH)3, which is stable until the pH decreases below 5.5. This investigation has found that the Bayer precipitate is stable across a wide pH range in the presence of common organic acids found in the rhizosphere, and that initial decomposition steps are likely to be beneficial in supporting plant growth through the release of nutrients such as Ca2þ and Mg2þ.
Resumo:
The mineral leightonite, a rare sulphate mineral of formula K2Ca2Cu(SO4)4.2H2O, has been studied using a combination of electron probe and vibrational spectroscopy. The mineral is characterized by an intense Raman band at 991 cm-1 attributed to the SO2- 4 m1 symmetric stretching mode. A series of Raman bands at 1047, 1120, 1137, 1163 and 1177 cm-1 assigned to the SO2- 4 m3 antisymmetric stretching modes. The observation of multiple bands shows that the symmetry of the sulphate anion is reduced. Multiple Raman and infrared bands in the OH stretching region shows that water in the structure of leightonite is in a range of molecular environments.
Resumo:
There are a large number of boron-containing minerals, of which vonsenite is one. Some discussion about the molecular structure of vonsenite exists in the literature. Whether water is involved in the structure is ill-determined. The molecular structure of vonsenite has been assessed by the combination of Raman and infrared spectroscopy. The Raman spectrum is characterized by two intense broad bands at 997 and 1059 cm−1 assigned to the BO stretching vibrational mode. A series of Raman bands in the 1200–1500 cm−1 spectral range are attributed to BO antisymmetric stretching modes and in-plane bending modes. The infrared spectrum shows complexity in this spectral range. No Raman spectrum of water in the OH stretching region could be obtained. The infrared spectrum shows a series of overlapping bands with bands identified at 3037, 3245, 3443, 3556, and 3614 cm−1. It is important to understand the structure of vonsenite in order to form nanomaterials based on its structure. Vibrational spectroscopy enables a better understanding of the structure of vonsenite.
Resumo:
This paper reports on an investigation of the flow/chemistry coupling inside a nominally two-dimensional inlet-fuelled scramjet configuration. The experiments were conducted at a freestream Mach number of 7.3 and a total flow enthalpy of 4.3MJ/kg corresponding to a Mach 9.7 flight condition. The phenomenon of radical-farming has been studied in detail using two-dimensional OH* chemiluminescence imaging and emission spectroscopy. High signal levels of excited OH (OH*) were detected behind the first shock reflections inside the combustion chamber upstream of any measurable pressure rise from combustion, which occurred towards the rear of the combustor. The production of OH in the first hot pocket initiates the ignition process and then accelerates the combustion process in the next downstream hot pocket. This was confirmed by numerical simulations of premixed hydrogen/air flow through the scramjet. Chemical kinetics analyses reveal that the ignition process is governed by the interaction between various reaction groups leading to a chainbranching explosion for low mean temperature and pressure combustion flowfields.
Resumo:
Emission spectroscopy was used to investigate ignition and combustion characteristics of supersonic combustion ramjet engines. Two-dimensional scramjet models with inlet injection, fuelled with hydrogen gas, were used in the study. The scramjet engines were configured to operate in radical farming mode, where combustion radicals are formed behind shock waves reflected at the walls. The chemiluminescence emission signals were recorded in a two-dimensional, time-integrated fashion to give information on the location and distribution of the radical farms in the combustors. High signal levels were detected in localised regions immediately downstream of shock reflections, an indication of localised hydroxyl formation supporting the concept of radical farming. Results are presented for a symmetric as well as an asymmetric scramjet geometry. These data represent the first successful visualisation of radical farms in the hot pockets of a supersonic combustor. Spectrally resolved measurements have been obtained in the ultraviolet wavelength range between 300 and 400 nm. This data shows that the OH! chemiluminescence signal around 306nm is not the most dominant source of radiation observed in the radical farms.
Resumo:
Various models for the crystal structure of hydronium jarosite were determined from Rietveld refinements against neutron powder diffraction patterns collected at ambient temperature and also single-crystal X-ray diffraction data. The possibility of a lower symmetry space group for hydronium jarosite that has been suggested by the literature was investigated. It was found the space group is best described as R3¯m, the same for other jarosite minerals. The hydronium oxygen atom was found to occupy the 3¯m site (3a Wyckoff site). Inadequately refined hydronium bond angles and bond distances without the use of restraints are due to thermal motion and disorder of the hydronium hydrogen atoms across numerous orientations. However, the acquired data do not permit a precise determination of these orientations; the main feature up/down disorder of hydronium is clear. Thus, the highest symmetry model with the least disorder necessary to explain all data was chosen: The hydronium hydrogen atoms were modeled to occupy an m (18 h Wyckoff site) with 50 % fractional occupancy, leading to disorder across two orientations. A rigid body description of the hydronium ion rotated by 60° with H–O–H bond angles of 112° and O–H distances of 0.96 Å was optimal. This rigid body refinement suggests that hydrogen bonds between hydronium hydrogen atoms and basal sulfate oxygen atoms are not predominant. Instead, hydrogen bonds are formed between hydronium hydrogen atoms and hydroxyl oxygen atoms. The structure of hydronium alunite is expected to be similar given that alunite supergroup minerals are isostructural.
Resumo:
Medroxyprogesterone acetate (MPA) has widely been used in hormone replacement therapy (HRT), and is associated with an increased risk of breast cancer, possibly due to disruption of androgen receptor (AR) signaling. In contrast, the synthetic HRT Tibolone does not increase breast density, and is rapidly metabolized to estrogenic 3α-OH-tibolone and 3β-OH-tibolone, and a delta-4 isomer (Δ4-TIB) that has both androgenic and progestagenic properties. Here, we show that 5α-dihydrotestosterone (DHT) and Δ4-TIB, but not MPA, stabilize AR protein levels, initiate specific AR intramolecular interactions critical for AR transcriptional regulation, and increase proliferation of AR positive MDA-MB-453 breast cancer cells. Structural modeling and molecular dynamic simulation indicate that Δ4-TIB induces a more stable AR structure than does DHT, and MPA a less stable one. Microarray expression analyses confirms that the molecular actions of Δ4-TIB more closely resembles DHT in breast cancer cells than either ligand does to MPA.
Resumo:
It is well established that calcitonin is a potent inhibitor of bone resorption; however, a physiological role for calcitonin acting through its cognate receptor, the calcitonin receptor (CTR), has not been identified. Data from previous genetically modified animal models have recognized a possible role for calcitonin and the CTR in controlling bone formation; however, interpretation of these data are complicated, in part because of their mixed genetic background. Therefore, to elucidate the physiological role of the CTR in calcium and bone metabolism, we generated a viable global CTR knockout (KO) mouse model using the Cre/loxP system, in which the CTR is globally deleted by >94% but <100%. Global CTRKOs displayed normal serum ultrafiltrable calcium levels and a mild increase in bone formation in males, showing that the CTR plays a modest physiological role in the regulation of bone and calcium homeostasis in the basal state in mice. Furthermore, the peak in serum total calcium after calcitriol [1,25(OH)2D3]-induced hypercalcemia was substantially greater in global CTRKOs compared with controls. These data provide strong evidence for a biological role of the CTR in regulating calcium homeostasis in states of calcium stress.
Resumo:
Theoretical calculations of the C3HO potential surface at the CCSD(T)/aug-cc-pVDu/B3LYP/6-31G* level indicate that the three radicals HCCCO, CCCHO, and (cyclo-C3H)=O are stable, with HCCCO being the most stable of the three. A fourth isomer, CCHCO, is unstable with respect to cyclization to (cyclo-C3H)=O. Two isomers have been prepared by neutralization of charged precursors, formed as follows: (i) HCCCO, by HC drop C-C(O)-O+(H)(Me) --> HC3O+ + MeOH, and (ii) C2CHO, by (a) Me3SiC drop C-CHO + HO- --> C- drop C-CHO + Me3SiOH and (b) C- drop C-CH(OH)-C drop CH --> C- drop C-CHO + C2H2. A comparison of the CR and -NR+ spectra of -C2CHO indicate that C2CHO is (partially) rearranging to an isomer that shows significant formation of CO.(+) in the -NR+ spectrum of the anion. Ab initio calculations indicate that HCCCO is the product of the isomerism and that a proportion of these isomerized neutrals dissociate to CO and C2H. The neutral HCCCO may be formed by (i) synchronous rearrangement of C2CHO and/or (ii) stepwise rearrangement of C2CHO through (cyclo-C3H)=O. The second of these processes should have the higher rate, as it has the lower barrier in the rate-determining step and the higher Arrhenius pre-exponential A factor.
Resumo:
We present a determination of Delta(f)H(298)(HOO) based upon a negative. ion thermodynamic cycle. The photoelectron spectra of HOO- and DOO- were used to measure the molecular electron affinities (EAs). In a separate experiment, a tandem flowing afterglow-selected ion flow tube (FA-SIFT) was used to measure the forward and reverse rate constants for HOO- + HCdropCH reversible arrow HOOH + HCdropC(-) at 298 K, which gave a value for Delta(acid)H(298)(HOO-H). The experiments yield the following values: EA(HOO) = 1.078 +/- 0.006 eV; T-0((X) over tilde HOO - (A) over tilde HOO) = 0.872 +/- 0.007 eV; EA(DOO) = 1.077 +/- 0.005 eV; T-0((X) over tilde DOO - (A) over tilde DOO) = 0.874 +/- 0.007 eV; Delta(acid)G(298)(HOO-H) = 369.5 +/- 0.4 kcal mol(-1); and Delta(acid)H(298)(HOO-H) = 376.5 +/- 0.4 kcal mol(-1). The acidity/EA thermochemical cycle yields values for the bond enthalpies of DH298(HOO-H) = 87.8 +/- 0.5 kcal mol(-1) and Do(HOO-H) = 86.6 +/- 0.5 kcal mol(-1). We recommend the following values for the heats of formation of the hydroperoxyl radical: Delta(f)H(298)(HOO) = 3.2 +/- 0.5 kcal mol(-1) and Delta(f)H(0)(HOO) = 3.9 +/- 0.5 kcal mol(-1); we recommend that these values supersede those listed in the current NIST-JANAF thermochemical tables.
Resumo:
Alkyl hydroperoxides (ROOH) are attributed a key role in the biochemical oxidation of lipids during oxidative stress.1 In this chemistry ROOH compounds, where the R groups are unsaturated fatty acids, are viewed as transient ntermediates which are readily degraded, due to the lability of the RO-OH bond, to yield potentially genotoxic aldehydes and ketones.2 Generally, the decomposition of alkyl hydroperoxides is thought to be mediated by radical abstraction or electron transfer processes usually involving enzymes, transition metals, or recently, Vitamin C.3 In this paper we present the first unambiguous experimental and computational evidence for base-mediated heterolytic decomposition of simple alkyl hydroperoxides by the mechanism outlined in Scheme 1.
Resumo:
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH3OO-, CD3OO-, and CH3CH2OO-) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer, gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH3OO, (X) over tilde (2)A"] = 1.161 +/- 0.005 eV, EA[CD3OO, (X) over tilde (2)A"] = 1.154 +/- 0.004 eV, and EA[CH3CH2OO, (X) over tilde (2)A"] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: DeltaE((X) over tilde 2A"-(A) over tilde 2A')[CH3OO] = 0.914 +/- 0.005 eV, DeltaE((X) over tilde (2)A"-(A) over tilde 2A') [CD3OO] = 0.913 +/- 0.004 eV, and DeltaE((X) over tilde (2)A"-(A) over tilde (2)A')[CH3CH2OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube k(FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta (acid)G(298)(CH3OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta (acid)G(298)(CD3OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta (acid)G(298)(CH3CH2OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta H-acid(298)(CH3OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta H-acid(298)(CD3OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta H-acid(298)(CH2CH3OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH298(CH3OO-H) 87.8 +/- 1.0 kcal mol(-1), DH298(CD3OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH298(CH3CH2OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH3OO and CH3CH2OO. Using experimental bond enthalpies, DH298(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta H-f(298)[CH3OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta H-f(298)[CH3CH2OO] = -6.8 +/- 2.3 kcal mol(-1).