425 resultados para Energy Requirement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new era of visible and sharable electricity information is emerging. Where eco-feedback is installed, households can now visualise many aspects of their energy consumption and share this information with others through Internet platforms such as social media. Despite providing users with many affordances, eco-feedback information can make public previously private actions from within the intimate setting of the family home. This paper represents a study focussing specifically on the privacy aspects of nascent ways for viewing and sharing this new stream of personal information. It explores the nuances of privacy related to eco-feedback both within and beyond the family home. While electricity consumption information may not be considered private itself, the household practices which eco-feedback systems makes visible may be private. We show that breaches of privacy can occur in unexpected ways and have the potential to cause distress. The paper concludes with some suggestions for how to realise the benefits of sharing energy consumption information whist effectively maintaining individuals’ conceptions of adequate privacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an efficient algorithm for optimizing the operation of battery storage in a low voltage distribution network with a high penetration of PV generation. A predictive control solution is presented that uses wavelet neural networks to predict the load and PV generation at hourly intervals for twelve hours into the future. The load and generation forecast, and the previous twelve hours of load and generation history, is used to assemble load profile. A diurnal charging profile can be compactly represented by a vector of Fourier coefficients allowing a direct search optimization algorithm to be applied. The optimal profile is updated hourly allowing the state of charge profile to respond to changing forecasts in load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the variety of PV inverter types and the number of transformerless PV inverters on the Australian market increasing, we revisit some of the issues associated with these topologies. A recent electric shock incident in Queensland (luckily without serious outcome) associated with a transformerless PV system, highlights the need for earthing PV array structures and PV module frames to prevent capacitive leakage currents causing electric shock. The presented test results of the relevant voltages associated with leakage currents of five transformerless PV inverters stress this requirement, which is currently being addressed by both the Clean Energy Council and Standards Australia. DC current injection tests were performed on the same five inverters and were used to develop preliminary recommendations for a more meaningful DC current test procedure for AS4777 Part 2. The test circuit, methodology and results are presented and discussed. A notable temperature dependency of DC current injections with three of the five inverters suggests that DC current injection should be tested at high and low internal inverter temperatures whereas the power dependency noted only for one inverter does not seem to justify recommendations for a (rather involved) standard test procedure at different power levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work examined the operation and optimisation of dye-sensitised solar cell arrays, informing ways to improve performance through materials choices and geometrical design. Methods to improve the output of solar arrays under shading by external objects like trees or building were developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofuel produced by fast pyrolysis from biomass is a promising candidate. The heart of the system is a reactor which is directly or indirectly heated to approximately 500°C by exhaust gases from a combustor that burns pyrolysis gas and some of the by-product char. In most of the cases, external biomass heater is used as heating source of the system while internal electrical heating is recently implemented as source of reactor heating. However, this heating system causes biomass or other conventional forms of fuel consumption to produce renewable energy and contributes to environmental pollution. In order to overcome these, the feasibility of incorporating solar energy with fast pyrolysis has been investigated. The main advantages of solar reactor heating include renewable source of energy, comparatively simpler devices, and no environmental pollution. A lab scale pyrolysis setup has been examined along with 1.2 m diameter parabolic reflector concentrator that provides hot exhaust gas up to 162°C. The study shows that about 32.4% carbon dioxide (CO2) emissions and almost one-third portion of fuel cost are reduced by incorporating solar heating system. Successful implementation of this proposed solar assisted pyrolysis would open a prospective window of renewable energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the existing frameworks for energy management in the brewing industry and details the design, development and implementation of a new framework at a modern brewery. The aim of the research was to develop an energy management framework to identify opportunities in a systematic manner using Systems Engineering concepts and principles. This work led to a Sustainable Energy Management Framework, SEMF. Using the SEMF approach, one of Australia's largest breweries has achieved number 1 ranking in the world for water use for the production of beer and has also improved KPI's and sustained the energy management improvements that have been implemented during the past 15 years. The framework can be adapted to other manufacturing industries in the Australian context and is considered to be a new concept and a potentially important tool for energy management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Society is increasingly calling for professionals across government, industry, business and civil society to be able to problem-solve issues related to climate change and sustainable development as part of their work. In particular there is an emerging realisation of the fundamental need to swiftly reduce the growing demand for energy across society, and to then meet the demand with low emissions options. A key ingredient to addressing such issues is equipping professionals with emerging knowledge and skills to address energy challenges in all aspects of their work. The Council of Australian Governments has recognised this need, signing the National Partnership Agreement on Energy Efficiency in July 2009, which included a commitment to assist business and industry obtain the knowledge, skills and capacity to pursue cost-effective energy efficiency opportunities.2 Engineering will play a critical part among the professions, with Engineers Australia acknowledging that, ‘The need to make changes in the way energy is used and supplied throughout the world represents the greatest challenge to engineers in moving toward sustainability.’

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the findings of an investigation of energy efficiency resources for undergraduate engineering education, undertaken by web-based research, conversations with educators, and a university survey. The investigation draws on the results of a number of previous investigations undertaken by the research team for NFEE related to energy efficiency education and presents the following findings and recommendations, as explained in greater detail in the body of the report. The findings suggest that even though certain EE concepts and principles have been identified by lecturers as being important there is little to no coverage of a number of these concepts in some programs/courses. Similarly, many topics relating to the most important EE workforce skills and significant shortages as identified in industry research, do not rate highly in terms of both perceived importance by lecturers, or coverage within existing courses. Overall, these findings suggest that despite growing awareness of the importance of EE in both industry and academia, the current depth and breadth of EE content in courses does not reflect this. It confirms that efforts in these areas can be better supported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Energy Efficiency (EE) Graduate Attributes Project focuses on engineering as a priority profession that has a significant role to play in addressing energy demand and supply issues in Australia. Specifically, this project aims to support embedding EE knowledge and skills throughout the engineering undergraduate curriculum, to help build capacity within the Australian workforce across major sectors of the economy, from mining, manufacturing and industrial applications to design, construction, maintenance and retrofitting built environments. The resultant report is intended to assist in future consultation with key groups such as Engineers Australia (EA), the Australian Council of Engineering Deans (ACED) and the eight EA colleges, to support systemic curriculum renewal and promote the design and development of high quality EE engineering education resources. The project is based on a whole-of-program outcomes-based approach to curriculum renewal, creating a transparent framework for integrating EE. This comprises collaborative consideration by academics and professional engineers who have experience in teaching and practising EE, to identify what students should learn to be equipped with relevant competencies by the time they graduate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis various schemes using custom power devices for power quality improvement in low voltage distribution network are studied. Customer operated distributed generators makes a typical network non-radial and affect the power quality. A scheme considering different algorithm of DSTATCOM is proposed for power circulation and islanded operation of the system. To compensate reactive power overflow and facilitate unity power factor, a UPQC is introduced. Stochastic analysis is carried out for different scenarios to get a comprehensive idea about a real life distribution network. Combined operation of static compensator and voltage regulator is tested for the optimum quality and stability of the system.