320 resultados para EXTENDED UNCERTAINTY RELATIONS
Resumo:
'Extended Conversation Pieces' brings together conversations about art, and conversation as art. The exhibition features collaborative works by six Brisbane-based artists, Catherine or Kate (Catherine Sagin and Kate Woodcroft), Scott Ferguson (Erika Scott and Brooke Ferguson) and Courtney Coombs and Caitlin Franzmann. These artists engage with ideas of contemporary feminism through processes of dialogue and exchange; exploring subjectivity, humour and intimacy in performance and installation works. 'Extended Conversation Pieces' showcases the distinctive approach to contemporary practice at Boxcopy, an artist run initiative focused on supporting and commissioning new experimental works by Australian artists, and engaging with collaborative processes and practices. This project was commissioned by the Melbourne Art Foundation and presented at the MAF Project Rooms, Melbourne Art Fair, Melbourne in 2014.
Resumo:
The JoMeC Network project had three key objectives. These were to: 1. Benchmark the pedagogical elements of journalism, media and communication (JoMeC) programs at Australian universities in order to develop a set of minimum academic standards, to be known as Threshold Learning Outcomes (TLOs), which would applicable to the disciplines of Journalism, Communication and/or Media Studies, and Public Relations; 2. Build a learning and teaching network of scholars across the JoMeC disciplines to support collaboration, develop leadership potential among educators, and progress shared priorities; 3. Create an online resources hub to support learning and teaching excellence and foster leadership in learning and teaching in the JoMeC disciplines. In order to benchmark the pedagogical elements of the JoMeC disciplines, the project started with a comprehensive review of the disciplinary settings of journalism, media and communication-related programs within Higher Education in Australia plus an analysis of capstone units (or subjects) offered in JoMeC-related degrees. This audit revealed a diversity of degree titles, disciplinary foci, projected career outcomes and pedagogical styles in the 36 universities that offered JoMeC-related degrees in 2012, highlighting the difficulties of classifying the JoMeC disciplines collectively or singularly. Instead of attempting to map all disciplines related to journalism, media and communication, the project team opted to create generalised TLOs for these fields, coupled with detailed TLOs for bachelor-level qualifications in three selected JoMeC disciplines: Journalism, Communication and/or Media Studies, and Public Relations. The initial review’s outcomes shaped the methodology that was used to develop the TLOs. Given the complexity of the JoMeC disciplines and the diversity of degrees across the network, the project team deployed an issue-framing process to create TLO statements. This involved several phases, including discussions with an issue-framing team (an advisory group of representatives from different disciplinary areas); research into accreditation requirements and industry-produced materials about employment expectations; evaluation of learning outcomes from universities across Australia; reviews of scholarly literature; as well as input from disciplinary leaders in a variety of forms. Draft TLOs were refined after further consultation with industry stakeholders and the academic community via email, telephone interviews, and meetings and public forums at conferences. This process was used to create a set of common TLOs for JoMeC disciplines in general and extended TLO statements for the specific disciplines of Journalism and Public Relations. A TLO statement for Communication and/or Media Studies remains in draft form. The Australian and New Zealand Communication Association (ANZCA) and Journalism Education and Research Association of Australian (JERAA) have agreed to host meetings to review, revise and further develop the TLOs. The aim is to support the JoMeC Network’s sustainability and the TLOs’ future development and use.
Resumo:
This research explored the feasibility of using multidimensional scaling (MDS) analysis in novel combination with other techniques to study comprehension of epistemic adverbs expressing doubt and certainty (e.g., evidently, obviously, probably) as they relate to health communication in clinical settings. In Study 1, Australian English speakers performed a dissimilarity-rating task with sentence pairs containing the target stimuli, presented as "doctors' opinions". Ratings were analyzed using a combination of cultural consensus analysis (factor analysis across participants), weighted-data classical-MDS, and cluster analysis. Analyses revealed strong within-community consistency for a 3-dimensional semantic space solution that took into account individual differences, strong statistical acceptability of the MDS results in terms of stress and explained variance, and semantic configurations that were interpretable in terms of linguistic analyses of the target adverbs. The results confirmed the feasibility of using MDS in this context. Study 2 replicated the results with Canadian English speakers on the same task. Semantic analyses and stress decomposition analysis were performed on the Australian and Canadian data sets, revealing similarities and differences between the two groups. Overall, the results support using MDS to study comprehension of words critical for health communication, including in future studies, for example, second language speaking patients and/or practitioners. More broadly, the results indicate that the techniques described should be promising for comprehension studies in many communicative domains, in both clinical settings and beyond, and including those targeting other aspects of language and focusing on comparisons across different speech communities.
Resumo:
This paper addresses the challenges of flood mapping using multispectral images. Quantitative flood mapping is critical for flood damage assessment and management. Remote sensing images obtained from various satellite or airborne sensors provide valuable data for this application, from which the information on the extent of flood can be extracted. However the great challenge involved in the data interpretation is to achieve more reliable flood extent mapping including both the fully inundated areas and the 'wet' areas where trees and houses are partly covered by water. This is a typical combined pure pixel and mixed pixel problem. In this paper, an extended Support Vector Machines method for spectral unmixing developed recently has been applied to generate an integrated map showing both pure pixels (fully inundated areas) and mixed pixels (trees and houses partly covered by water). The outputs were compared with the conventional mean based linear spectral mixture model, and better performance was demonstrated with a subset of Landsat ETM+ data recorded at the Daly River Basin, NT, Australia, on 3rd March, 2008, after a flood event.
Resumo:
The most difficult operation in the flood inundation mapping using optical flood images is to separate fully inundated areas from the ‘wet’ areas where trees and houses are partly covered by water. This can be referred as a typical problem the presence of mixed pixels in the images. A number of automatic information extraction image classification algorithms have been developed over the years for flood mapping using optical remote sensing images. Most classification algorithms generally, help in selecting a pixel in a particular class label with the greatest likelihood. However, these hard classification methods often fail to generate a reliable flood inundation mapping because the presence of mixed pixels in the images. To solve the mixed pixel problem advanced image processing techniques are adopted and Linear Spectral unmixing method is one of the most popular soft classification technique used for mixed pixel analysis. The good performance of linear spectral unmixing depends on two important issues, those are, the method of selecting endmembers and the method to model the endmembers for unmixing. This paper presents an improvement in the adaptive selection of endmember subset for each pixel in spectral unmixing method for reliable flood mapping. Using a fixed set of endmembers for spectral unmixing all pixels in an entire image might cause over estimation of the endmember spectra residing in a mixed pixel and hence cause reducing the performance level of spectral unmixing. Compared to this, application of estimated adaptive subset of endmembers for each pixel can decrease the residual error in unmixing results and provide a reliable output. In this current paper, it has also been proved that this proposed method can improve the accuracy of conventional linear unmixing methods and also easy to apply. Three different linear spectral unmixing methods were applied to test the improvement in unmixing results. Experiments were conducted in three different sets of Landsat-5 TM images of three different flood events in Australia to examine the method on different flooding conditions and achieved satisfactory outcomes in flood mapping.