500 resultados para Dynamic Stiffness Matrix
Resumo:
This paper presents a new method to determine feeder reconfiguration scheme considering variable load profile. The objective function consists of system losses, reliability costs and also switching costs. In order to achieve an optimal solution the proposed method compares these costs dynamically and determines when and how it is reasonable to have a switching operation. The proposed method divides a year into several equal time periods, then using particle swarm optimization (PSO), optimal candidate configurations for each period are obtained. System losses and customer interruption cost of each configuration during each period is also calculated. Then, considering switching cost from a configuration to another one, dynamic programming algorithm (DPA) is used to determine the annual reconfiguration scheme. Several test systems were used to validate the proposed method. The obtained results denote that to have an optimum solution it is necessary to compare operation costs dynamically.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.
Resumo:
Covertly tracking mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms requires both visual and acoustic stealth. Whilst the use of robots for stealthy surveillance is not new, the majority only consider navigation for visual covertness. However, most fielded robotic systems have a non-negligible acoustic footprint arising from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. This time-varying acoustic signature can jeopardise any visual covertness and needs to be addressed in any stealthy navigation strategy. In previous work, we addressed the initial concepts for acoustically masking a tracking robot’s movements as it travels between observation locations selected to minimise its detectability by a dynamic natural target and ensuring con- tinuous visual tracking of the target. This work extends the overall concept by examining the utility of real-time acoustic signature self-assessment and exploiting shadows as hiding locations for use in a combined visual and acoustic stealth framework.
Resumo:
This work is motivated by the desire to covertly track mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms with a non-negligible acoustic signature. The use of robots for stealthy surveillance is not new. Many studies exist but only consider the navigation problem to maintain visual covertness. However, robotic systems also have a significant acoustic footprint from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. All these can jepordise any visual covertness. In this work, we experimentally explore the concepts of opportunistically utilizing naturally occurring sounds within outdoor environments to mask the motion of a robot, and being visually covert whilst maintaining constant observation of the target. Our experiments in a constrained outdoor built environment demonstrate the effectiveness of the concept by showing a reduced acoustic signature as perceived by a mobile target allowing the robot to covertly navigate to opportunistic vantage points for observation.
Resumo:
This paper describes a texture recognition based method for segmenting kelp from images collected in highly dynamic shallow water environments by an Autonomous Underwater Vehicle (AUV). A particular challenge is image quality that is affected by uncontrolled lighting, reduced visibility, significantly varying perspective due to platform egomotion, and kelp sway from wave action. The kelp segmentation approach uses the Mahalanobis distance as a way to classify Haralick texture features from sub-regions within an image. The results illustrate the applicability of the method to classify kelp allowing construction of probability maps of kelp masses across a sequence of images.
Resumo:
Rail steel bridges are vulnerable to high impact forces due to the passage of trains; unfortunately the determination of these transient impact forces is not straightforward as these are affected by a large number of parameters, including the wagon design, the wheel-rail contact and the design parameters of the bridge deck and track, as well as the operational parameters – wheel load and speed. To determine these impact forces, a detailed rail train-track/bridge dynamic interaction model has been developed, which includes a comprehensive train model using multi-body dynamics approach and a flexible track/bridge model using Euler– Bernoulli beam theory. Single and multi-span bridges have been modelled to examine their dynamic characteristics. From the single span bridge, the train critical speed is determined; the minimum distance of two peak loadings is found to affect the train critical speed. The impact factor and the dynamic characteristics are discussed.
Resumo:
Along with the tri-lineage of bone, cartilage and fat, human mesenchymal stem cells (hMSCs) retain neural lineage potential. Multiple factors have been described that influence lineage fate of hMSCs including the extracellular microenvironment or niche. The niche includes the extracellular matrix (ECM) providing structural composition, as well as other associated proteins and growth factors, which collectively influence hMSC stemness and lineage specification. As such, lineage specific differentiation of MSCs is mediated through interactions including cell–cell and cell–matrix, as well as through specific signalling pathways triggering downstream events. Proteoglycans (PGs) are ubiquitous within this microenvironment and can be localised to the cell surface or embedded within the ECM. In addition, the heparan sulfate (HS) and chondroitin sulfate (CS) families of PGs interact directly with a number of growth factors, signalling pathways and ECM components including FGFs, Wnts and fibronectin. With evidence supporting a role for HSPGs and CSPGs in the specification of hMSCs down the osteogenic, chondrogenic and adipogenic lineages, along with the localisation of PGs in development and regeneration, it is conceivable that these important proteins may also play a role in the differentiation of hMSCs toward the neuronal lineage. Here we summarise the current literature and highlight the potential for HSPG directed neural lineage fate specification in hMSCs, which may provide a new model for brain damage repair.
Resumo:
Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from materials characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures, comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures but little attention has been given to the effect on the light scattering properties in relation to DLS. In this work, small (core size < 5 nm) core-shell nanoparticles were used as a case study to measure the capping thickness of a layer of dodecanethiol (DDT) on Au and ZnO nanoparticles by DLS. We find that the DDT shell has very little effect on the scattering properties of the inorganic core and hence can be ignored to a first approximation. However, this results in conventional DLS analysis overestimating the hydrodynamic size in the volume and number weighted distributions. By introducing a simple correction formula that more accurately yields hydrodynamic size distributions a more precise determination of the molecular shell thickness is obtained. With this correction, the measured thickness of the DDT shell was found to be 7.3 ± 0.3 Å, much less than the extended chain length of 16 Å. This organic layer thickness suggests that on small nanoparticles, the DDT monolayer adopts a compact disordered structure rather than an open ordered structure on both ZnO and Au nanoparticle surfaces. These observations are in agreement with published molecular dynamics results.
Resumo:
Modern cancer research requires physiological, three-dimensional (3-D) cell culture platforms, wherein the physical and chemical characteristics of the extracellular matrix (ECM) can be modified. In this study, gelatine methacrylamide (GelMA)-based hydrogels were characterized and established as in vitro and in vivo spheroid-based models for ovarian cancer, reflecting the advanced disease stage of patients, with accumulation of multicellular spheroids in the tumour fluid (ascites). Polymer concentration (2.5-7% w/v) strongly influenced hydrogel stiffness (0.5±0.2kPa to 9.0±1.8kPa) but had little effect on solute diffusion. The diffusion coefficient of 70kDa fluorescein isothiocyanate (FITC)-labelled dextran in 7% GelMA-based hydrogels was only 2.3 times slower compared to water. Hydrogels of medium concentration (5% w/v GelMA) and stiffness (3.4kPa) allowed spheroid formation and high proliferation and metabolic rates. The inhibition of matrix metalloproteinases and consequently ECM degradability reduced spheroid formation and proliferation rates. The incorporation of the ECM components laminin-411 and hyaluronic acid further stimulated spheroid growth within GelMA-based hydrogels. The feasibility of pre-cultured GelMA-based hydrogels as spheroid carriers within an ovarian cancer animal model was proven and led to tumour development and metastasis. These tumours were sensitive to treatment with the anti-cancer drug paclitaxel, but not the integrin antagonist ATN-161. While paclitaxel and its combination with ATN-161 resulted in a treatment response of 33-37.8%, ATN-161 alone had no effect on tumour growth and peritoneal spread. The semi-synthetic biomaterial GelMA combines relevant natural cues with tunable properties, providing an alternative, bioengineered 3-D cancer cell culture in in vitro and in vivo model systems.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.
Resumo:
This paper presents a method for the continuous segmentation of dynamic objects using only a vehicle mounted monocular camera without any prior knowledge of the object’s appearance. Prior work in online static/dynamic segmentation is extended to identify multiple instances of dynamic objects by introducing an unsupervised motion clustering step. These clusters are then used to update a multi-class classifier within a self-supervised framework. In contrast to many tracking-by-detection based methods, our system is able to detect dynamic objects without any prior knowledge of their visual appearance shape or location. Furthermore, the classifier is used to propagate labels of the same object in previous frames, which facilitates the continuous tracking of individual objects based on motion. The proposed system is evaluated using recall and false alarm metrics in addition to a new multi-instance labelled dataset to evaluate the performance of segmenting multiple instances of objects.
Resumo:
Organizational learning has been studied as a key factor in firm performance and internationalization. Moving beyond the past emphasis on market learning, we develop a more complete explanation of learning, its relationship to innovation, and their joint effect on early internationalization. We theorize that, driven by the founders’ international vision, early internationalizing firms employ a dual subsystem of dynamic capabilities: a market subsystem consisting of market-focused learning capability and marketing capability, and a socio-technical subsystem comprised of network learning capability and internally focused learning capability. We argue that innovation mediates the proposed relationship between the dynamic capability structure and early internationalization. We conduct case studies to develop the conceptual framework and test it in a field survey of early internationalizing firms from Australia and the United States. Our findings indicate a complex interplay of capabilities driving innovation and early internationalization. We provide theoretical and practical implications and offer insights for future research.
Resumo:
Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollagenous protein in extrafibrillar protein matrix) and hydroxyapatite (HA, a mineral nanoplatelet in mineralized collagen fibrils) were investigated using molecular dynamics method. We found that the interfacial mechanical behaviour is governed by the electrostatic attraction between acidic amino acid residues in OPN and calcium in HA. Higher energy dissipation is associated with the OPN peptides with a higher number of acidic amino acid residues. When loading in the interface direction, new bonds between some acidic residues and HA surface are formed, resulting in a stick-slip type motion of OPN peptide on the HA surface and high interfacial energy dissipation. The formation of new bonds during loading is considered to be a key mechanism responsible for high fracture resistance observed in bone and other biological materials.
Resumo:
Aiming at the large scale numerical simulation of particle reinforced materials, the concept of local Eshelby matrix has been introduced into the computational model of the eigenstrain boundary integral equation (BIE) to solve the problem of interactions among particles. The local Eshelby matrix can be considered as an extension of the concepts of Eshelby tensor and the equivalent inclusion in numerical form. Taking the subdomain boundary element method as the control, three-dimensional stress analyses are carried out for some ellipsoidal particles in full space with the proposed computational model. Through the numerical examples, it is verified not only the correctness and feasibility but also the high efficiency of the present model with the corresponding solution procedure, showing the potential of solving the problem of large scale numerical simulation of particle reinforced materials.
Resumo:
Transition zones between bridge decks and rail tracks suffer early failure due to poor interaction between rail vehicles and sudden changes of stiffness. This has been an ongoing problem to rail industry and yet still no systematic studies appear to have been taken to maintain a gradually smoothening transmission of forces between the bridge and its approach. Differential settlement between the bridge deck and rail track in the transition zone is the fundamental issue, which negatively impacts the rail industry by causing passenger discomfort, early damage to infrastructure and vehicle components, speed reduction, and frequent maintenance cycles. Identification of mechanism of the track degradation and factors affecting is imperative to design any mitigation method for reducing track degradation rate at the bridge transition zone. Unfortunately this issue is still not well understood, after conducting a numbers of reviews to evaluate the key causes, and introducing a wide range of mitigation techniques. In this study, a comprehensive analysis of the available literature has been carried out to develop either a novel design framework or a mitigation technique for the bridge transition zone. This paper addresses three critical questions in relation to the track degradation at transition zone: (1) what are the causes of bridge transition track degradation?; (2) what are the available mitigation techniques in reducing the track degradation rate?; (3) what are the factors affecting on poor performance of the existing mitigation techniques?. It is found that the absence of soil-water response, dynamic loading response, and behaviour of geotechnical characteristics under long-term conditions in existing track transition design frameworks critically influence on the failures of existing mitigation techniques. This paper also evaluates some of the existing design frameworks to identify how each design framework addresses the track degradation at the bridge transition zone.