340 resultados para Curve
Resumo:
Study design Anterior and posterior vertebral body heights were measured from sequential MRI scans of adolescent idiopathic scoliosis (AIS) patients and healthy controls. Objective To measure changes in vertebral body height over time during scoliosis progression to assess how vertebral body height discrepancies change during growth. Summary of background data Relative anterior overgrowth has been proposed as a potential driver for AIS initiation and progression. This theory proposes that the anterior column grows faster, and the posterior column slower, in AIS patients when compared to healthy controls. There is disagreement in the literature as to whether the anterior vertebral body heights are proportionally greater than posterior vertebral body heights in AIS patients when compared to healthy controls. To some extent, these discrepancies may be attributed to methodological differences. Methods MRI scans of the major curve of 21 AIS patients (mean age 12.5 ± 1.4 years, mean Cobb 32.2 ± 12.8º) and between T4 and T12 of 21 healthy adolescents (mean age 12.1 ± 0.5 years) were captured for this study. Of the 21 AIS patients, 14 had a second scan on average 10.8 ± 4.7 months after the first. Anterior and posterior vertebral body heights were measured from the true sagittal plane of each vertebra such that anterior overgrowth could be quantified. Results The difference between anterior and posterior vertebral body height in healthy, non-scoliotic children was significantly greater than in AIS patients with mild to moderate scoliosis. However there was no significant relationship between the overall anterior-posterior vertebral body height difference in AIS and either severity of the curve or its progression over time. Conclusions Whilst AIS patients have a proportionally longer anterior column than non-scoliotic controls, the degree of anterior overgrowth was not related to the rate of progression or the severity of the scoliotic curve.
Resumo:
In this paper we consider the third-moment structure of a class of time series models. It is often argued that the marginal distribution of financial time series such as returns is skewed. Therefore it is of importance to know what properties a model should possess if it is to accommodate unconditional skewness. We consider modeling the unconditional mean and variance using models that respond nonlinearly or asymmetrically to shocks. We investigate the implications of these models on the third-moment structure of the marginal distribution as well as conditions under which the unconditional distribution exhibits skewness and nonzero third-order autocovariance structure. In this respect, an asymmetric or nonlinear specification of the conditional mean is found to be of greater importance than the properties of the conditional variance. Several examples are discussed and, whenever possible, explicit analytical expressions provided for all third-order moments and cross-moments. Finally, we introduce a new tool, the shock impact curve, for investigating the impact of shocks on the conditional mean squared error of return series.
Resumo:
Background Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Methods Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. Findings The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+ 2,+1,− 2 relative to the apex, (p < 0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. Interpretation While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning.
Resumo:
Developments of surgical attachments for bone-anchored prostheses are slowly but surely winning over the initial disbelief in the orthopedic community. Clearly, this option is becoming accessible to a wide range of individuals with limb loss. Seminal studies have demonstrated that the pioneering procedure relying on screw-type fixation engenders major clinical benefits and acceptable safety. The surgical procedure for press-fit implants, such as the Integral-Leg-Prosthesis (ILP) has been described Dr Aschoff and his team. Some clinical benefits of press-fit implants have been also established. Here, his team is once again taking a leading role by sharing the progression over 15 years of the rate of deep infections for 69 individuals with transfemoral amputation fitted with three successive refined versions of the ILP. By definition, a double-blind randomized clinical trial to test the effect of different fixation’s design is difficult. Alternatively, Juhnke and colleagues are reporting the outcomes of action-research study for a cohort of participants. The first and foremost important outcome of this study is the confirmation that the current design of the IPL and rehabilitation program are altogether leading to an acceptable rate of deep infection and other adverse events (e.g., structural failure of implant, periprosthetic factures). This study is also providing a strong insight onto the effect of major phases in redesign of an implant on the risk of infection. This is an important reminder that the development of a successful osseointegrated implant is unlikely to be immediate but the results of a learning curve made of empirical and sequential changes led by a reflective clinical practice. Clearly, this study provided better understanding of the safety of the ILP surgical and rehabilitation procedure while establishing standards and benchmark data for future studies focusing on design and infection of press-fit implants. Complementary observations of relationship between infection and cofounders such as loading of the prosthesis and prosthetic components used would be beneficial.Further definitive evidences of the clinical benefits with the latest design would be valuable, although an increase in health related quality of life and functional outcomes are likely to be confirmed. Altogether, the authors are providing compelling evidence that bone-anchored attachments particularly those relying on press-fit implants are an established alternative to socket prostheses.
Resumo:
The computational technique of the full ranges of the second-order inelastic behaviour evaluation of steel-concrete composite structure is not always sought forgivingly, and therefore it hinders the development and application of the performance-based design approach for the composite structure. To this end, this paper addresses of the advanced computational technique of the higher-order element with the refined plastic hinges to capture the all-ranges behaviour of an entire steel-concrete composite structure. Moreover, this paper presents the efficient and economical cross-section analysis to evaluate the element section capacity of the non-uniform and arbitrary composite section subjected to the axial and bending interaction. Based on the same single algorithm, it can accurately and effectively evaluate nearly continuous interaction capacity curve from decompression to pure bending technically, which is the important capacity range but highly nonlinear. Hence, this cross-section analysis provides the simple but unique algorithm for the design approach. In summary, the present nonlinear computational technique can simulate both material and geometric nonlinearities of the composite structure in the accurate, efficient and reliable fashion, including partial shear connection and gradual yielding at pre-yield stage, plasticity and strain-hardening effect due to axial and bending interaction at post-yield stage, loading redistribution, second-order P-δ and P-Δ effect, and also the stiffness and strength deterioration. And because of its reliable and accurate behavioural evaluation, the present technique can be extended for the design of the high-strength composite structure and potentially for the fibre-reinforced concrete structure.
Resumo:
OBJECTIVE This study determined if deficits in corneal nerve fiber length (CNFL) assessed using corneal confocal microscopy (CCM) can predict future onset of diabetic peripheral neuropathy (DPN). RESEARCH DESIGN AND METHODS CNFL and a range of other baseline measures were compared between 90 nonneuropathic patients with type 1 diabetes who did or did not develop DPN after 4 years. The receiver operator characteristic (ROC) curve was used to determine the capability of single and combined measures of neuropathy to predict DPN. RESULTS DPN developed in 16 participants (18%) after 4 years. Factors predictive of 4-year incident DPN were lower CNFL (P = 0.041); longer duration of diabetes (P = 0.002); higher triglycerides (P = 0.023); retinopathy (higher on the Early Treatment of Diabetic Retinopathy Study scale) (P = 0.008); nephropathy (higher albumin-to-creatinine ratio) (P = 0.001); higher neuropathy disability score (P = 0.037); lower cold sensation (P = 0.001) and cold pain (P = 0.027) thresholds; higher warm sensation (P = 0.008), warm pain (P = 0.024), and vibration (P = 0.003) thresholds; impaired monofilament response (P = 0.003); and slower peroneal (P = 0.013) and sural (P = 0.002) nerve conduction velocity. CCM could predict the 4-year incident DPN with 63% sensitivity and 74% specificity for a CNFL threshold cutoff of 14.1 mm/mm2 (area under ROC curve = 0.66, P = 0.041). Combining neuropathy measures did not improve predictive capability. CONCLUSIONS DPN can be predicted by various demographic, metabolic, and conventional neuropathy measures. The ability of CCM to predict DPN broadens the already impressive diagnostic capabilities of this novel ophthalmic marker.
Resumo:
In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.
Resumo:
Species distribution modelling (SDM) typically analyses species’ presence together with some form of absence information. Ideally absences comprise observations or are inferred from comprehensive sampling. When such information is not available, then pseudo-absences are often generated from the background locations within the study region of interest containing the presences, or else absence is implied through the comparison of presences to the whole study region, e.g. as is the case in Maximum Entropy (MaxEnt) or Poisson point process modelling. However, the choice of which absence information to include can be both challenging and highly influential on SDM predictions (e.g. Oksanen and Minchin, 2002). In practice, the use of pseudo- or implied absences often leads to an imbalance where absences far outnumber presences. This leaves analysis highly susceptible to ‘naughty-noughts’: absences that occur beyond the envelope of the species, which can exert strong influence on the model and its predictions (Austin and Meyers, 1996). Also known as ‘excess zeros’, naughty noughts can be estimated via an overall proportion in simple hurdle or mixture models (Martin et al., 2005). However, absences, especially those that occur beyond the species envelope, can often be more diverse than presences. Here we consider an extension to excess zero models. The two-staged approach first exploits the compartmentalisation provided by classification trees (CTs) (as in O’Leary, 2008) to identify multiple sources of naughty noughts and simultaneously delineate several species envelopes. Then SDMs can be fit separately within each envelope, and for this stage, we examine both CTs (as in Falk et al., 2014) and the popular MaxEnt (Elith et al., 2006). We introduce a wider range of model performance measures to improve treatment of naughty noughts in SDM. We retain an overall measure of model performance, the area under the curve (AUC) of the Receiver-Operating Curve (ROC), but focus on its constituent measures of false negative rate (FNR) and false positive rate (FPR), and how these relate to the threshold in the predicted probability of presence that delimits predicted presence from absence. We also propose error rates more relevant to users of predictions: false omission rate (FOR), the chance that a predicted absence corresponds to (and hence wastes) an observed presence, and the false discovery rate (FDR), reflecting those predicted (or potential) presences that correspond to absence. A high FDR may be desirable since it could help target future search efforts, whereas zero or low FOR is desirable since it indicates none of the (often valuable) presences have been ignored in the SDM. For illustration, we chose Bradypus variegatus, a species that has previously been published as an exemplar species for MaxEnt, proposed by Phillips et al. (2006). We used CTs to increasingly refine the species envelope, starting with the whole study region (E0), eliminating more and more potential naughty noughts (E1–E3). When combined with an SDM fit within the species envelope, the best CT SDM had similar AUC and FPR to the best MaxEnt SDM, but otherwise performed better. The FNR and FOR were greatly reduced, suggesting that CTs handle absences better. Interestingly, MaxEnt predictions showed low discriminatory performance, with the most common predicted probability of presence being in the same range (0.00-0.20) for both true absences and presences. In summary, this example shows that SDMs can be improved by introducing an initial hurdle to identify naughty noughts and partition the envelope before applying SDMs. This improvement was barely detectable via AUC and FPR yet visible in FOR, FNR, and the comparison of predicted probability of presence distribution for pres/absence.
Resumo:
Layered graphitic materials exhibit new intriguing electronic structure and the search for new types of two-dimensional (2D) monolayer is of importance for the fabrication of next generation miniature electronic and optoelectronic devices. By means of density functional theory (DFT) computations, we investigated in detail the structural, electronic, mechanical and optical properties of the single-layer bismuth iodide (BiI3) nanosheet. Monolayer BiI3 is dynamically stable as confirmed by the computed phonon spectrum. The cleavage energy (Ecl) and interlayer coupling strength of bulk BiI3 are comparable to the experimental values of graphite, which indicates that the exfoliation of BiI3 is highly feasible. The obtained stress-strain curve shows that the BiI3 nanosheet is a brittle material with a breaking strain of 13%. The BiI3 monolayer has an indirect band gap of 1.57 eV with spin orbit coupling (SOC), indicating its potential application for solar cells. Furthermore, the band gap of BiI3 monolayer can be modulated by biaxial strain. Most interestingly, interfacing electrically active graphene with monolayer BiI3 nanosheet leads to enhanced light absorption compared to that in pure monolayer BiI3 nanosheet, highlighting its great potential applications in photonics and photovoltaic solar cells.
Resumo:
Light gauge steel frame (LSF) wall systems are increasingly used in residential and commercial buildings as load bearing and non-load bearing elements. Conventionally, the fire resistance ratings of such building elements are determined using approximate prescriptive methods based on limited standard fire tests. However, recent studies have shown that in some instances real building fire time-temperature curves could be more severe than the standard fire curve, in terms of maximum temperature and rate of temperature rise. This has caused problems for safe evacuation and rescue activities, and in some instances has also lead to the collapse of buildings earlier than the prescribed fire resistance. Therefore a detailed research study into the performance of LSF wall systems under both standard fire and realistic fire conditions was undertaken using full scale fire tests to understand the fire performance of different LSF wall configurations. Both load bearing and non-load bearing full scale fire tests were performed on LSF walls configurations which included single layer, double layer, externally insulated wall panels made up of different steel sections and thicknesses of gypsum plasterboards. The non-load bearing fire test results were utilized to understand the factors affecting the fire resistance of LSF walls, while loading bearing fire test results led to development of simplified methods to predict the fire resistance ratings of load bearing LSF walls exposed to both standard and realistic design fires. This paper presents the results of full scale experimental study and highlights the effects of standard and realistic fire conditions on fire performance of LSF walls.
Resumo:
Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.
Resumo:
OBJECTIVE Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard. RESEARCH DESIGN AND METHODS Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy. RESULTS Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly (P = 0.14). CONCLUSIONS This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN.
Resumo:
PURPOSE: In vivo corneal confocal microscopy (CCM) is increasingly used as a surrogate endpoint in studies of diabetic polyneuropathy (DPN). However, it is not clear whether imaging the central cornea provides optimal diagnostic utility for DPN. Therefore, we compared nerve morphology in the central cornea and the inferior whorl, a more distal and densely innervated area located inferior and nasal to the central cornea. METHODS: A total of 53 subjects with type 1/type 2 diabetes and 15 age-matched control subjects underwent detailed assessment of neuropathic symptoms (NPS), deficits (neuropathy disability score [NDS]), quantitative sensory testing (vibration perception threshold [VPT], cold and warm threshold [CT/WT], and cold- and heat-induced pain [CIP/HIP]), and electrophysiology (sural and peroneal nerve conduction velocity [SSNCV/PMNCV], and sural and peroneal nerve amplitude [SSNA/PMNA]) to diagnose patients with (DPN+) and without (DPN-) neuropathy. Corneal nerve fiber density (CNFD) and length (CNFL) in the central cornea, and inferior whorl length (IWL) were quantified. RESULTS: Comparing control subjects to DPN- and DPN+ patients, there was a significant increase in NDS (0 vs. 2.6 ± 2.3 vs. 3.3 ± 2.7, P < 0.01), VPT (V; 5.4 ± 3.0 vs. 10.6 ± 10.3 vs. 17.7 ± 11.8, P < 0.01), WT (°C; 37.7 ± 3.5 vs. 39.1 ± 5.1 vs. 41.7 ± 4.7, P < 0.05), and a significant decrease in SSNCV (m/s; 50.2 ± 5.4 vs. 48.4 ± 5.0 vs. 39.5 ± 10.6, P < 0.05), CNFD (fibers/mm2; 37.8 ± 4.9 vs. 29.7 ± 7.7 vs. 27.1 ± 9.9, P < 0.01), CNFL (mm/mm2; 27.5 ± 3.6 vs. 24.4 ± 7.8 vs. 20.7 ± 7.1, P < 0.01), and IWL (mm/mm2; 35.1 ± 6.5 vs. 26.2 ± 10.5 vs. 23.6 ± 11.4, P < 0.05). For the diagnosis of DPN, CNFD, CNFL, and IWL achieved an area under the curve (AUC) of 0.75, 0.74, and 0.70, respectively, and a combination of IWL-CNFD achieved an AUC of 0.76. CONCLUSIONS: The parameters of CNFD, CNFL, and IWL have a comparable ability to diagnose patients with DPN. However, IWL detects an abnormality even in patients without DPN. Combining IWL with CNFD may improve the diagnostic performance of CCM.
Resumo:
Background Adolescent Idiopathic Scoliosis is the most common type of spinal deformity, and whilst the risk of progression appears to be biomechanically mediated (larger deformities are more likely to progress), the detailed biomechanical mechanisms driving progression are not well understood. Gravitational forces in the upright position are the primary sustained loads experienced by the spine. In scoliosis they are asymmetrical, generating moments about the spinal joints which may promote asymmetrical growth and deformity progression. Using 3D imaging modalities to estimate segmental torso masses allows the gravitational loading on the scoliotic spine to be determined. The resulting distribution of joint moments aids understanding of the mechanics of scoliosis progression. Methods Existing low-dose CT scans were used to estimate torso segment masses and joint moments for 20 female scoliosis patients. Intervertebral joint moments at each vertebral level were found by summing the moments of each of the torso segment masses above the required joint. Results The patients’ mean age was 15.3 years (SD 2.3; range 11.9 – 22.3 years); mean thoracic major Cobb angle 52° (SD 5.9°; range 42°-63°) and mean weight 57.5 kg (SD 11.5 kg; range 41 – 84.7 kg). Joint moments of up to 7 Nm were estimated at the apical level. No significant correlation was found between the patients’ major Cobb angles and apical joint moments. Conclusions Patients with larger Cobb angles do not necessarily have higher joint moments, and curve shape is an important determinant of joint moment distribution. These findings may help to explain the variations in progression between individual patients. This study suggests that substantial corrective forces are required of either internal instrumentation or orthoses to effectively counter the gravity-induced moments acting to deform the spinal joints of idiopathic scoliosis patients.
Resumo:
OBJECTIVE Public health organizations recommend that preschool-aged children accumulate at least 3h of physical activity (PA) daily. Objective monitoring using pedometers offers an opportunity to measure preschooler's PA and assess compliance with this recommendation. The purpose of this study was to derive step-based recommendations consistent with the 3h PA recommendation for preschool-aged children. METHOD The study sample comprised 916 preschool-aged children, aged 3 to 6years (mean age=5.0+/-0.8years). Children were recruited from kindergartens located in Portugal, between 2009 and 2013. Children wore an ActiGraph GT1M accelerometer that measured PA intensity and steps per day simultaneously over a 7-day monitoring period. Receiver operating characteristic (ROC) curve analysis was used to identify the daily step count threshold associated with meeting the daily 3hour PA recommendation. RESULTS A significant correlation was observed between minutes of total PA and steps per day (r=0.76, p<0.001). The optimal step count for >/=3h of total PA was 9099 steps per day (sensitivity (90%) and specificity (66%)) with area under the ROC curve=0.86 (95% CI: 0.84 to 0.88). CONCLUSION Preschool-aged children who accumulate less than 9000 steps per day may be considered Insufficiently Active.