574 resultados para CRESTAL BONE LEVELS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

QUT Bachelor of Radiation Therapy students progress from first visiting a radiation therapy department to graduation and progression into the NPDP over a span of three years. Although there are clear guidelines as to expected competency level post-NPDP, there is still a variety of perceived levels prior to this. Staff and students feedback both suggest that different centres and within centres different staff have differing opinions of these levels. Indeed, many staff members object to the use of the word “competency” for a pre-NPODP undergraduate, preferring the term “achievement”. While it is acknowledged that students progress at different rates, it is vitally important for equity that staff expectations of students at different academic levels are identical. Provision of guidelines for different stages of progression are essential for equitable assessment and most assessments, including the NRTAT are complemented by statements to enable level to be determined. For the University-specific competency assessments some level of consensus between clinical staff is required, especially where students are placed at a large number of different placement sites. Aims The main aim of this initial study is to gauge staff opinions of levels of student progression in order to judge cross-centres consistency. A secondary objective is to evaluate the degree of correlation between staff seniority and perception of student levels. Informal feedback suggests that staff at or just post NPDP level have a different perception of student competency expectations than more senior staff. If these perceptions change with level it will make agreement of guidelines statements more challenging. Study Methods A standard evaluation questionnaire was provided to RT staff participating in ongoing updates to clinical assessment. As part of curriculum development staff were asked to provide anonymous and optional answers to further questions in order to audit current practice. This involved assigning level of student progression to different statements relating to tasks or competencies. After data collation, scores were assigned to level and totals used to rank statements according to perceived student level. Descriptive statistical analysis was used to identify which statements were easier to assign to student level and which were more ambiguous. Further sub-analysis was performed for each category of staff seniority to judge differences in perception. Strength of correlation between seniority and expectation was calculated to confirm or contradict the informal feedback. Results By collating different staff perceptions of competencies for different student levels commonly agreed statements can be used to define achievement level. This presentation outlines the results of the audit including statements that most staff perceived as relevant to a specific student group and statements that staff found to be harder to attribute. Strength of correlation between staff perception and seniority will be outlined where statistically significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for a house rental model in Townsville, Australia is addressed. Models developed for predicting house rental levels are described. An analytical model is built upon a priori selected variables and parameters of rental levels. Regression models are generated to provide a comparison to the analytical model. Issues in model development and performance evaluation are discussed. A comparison of the models indicates that the analytical model performs better than the regression models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites are recently known to be among the most successful materials in biomedical applications. In this work we sought to fabricate fibrous scaffolds which can mimic the extra cellular matrix of cartilaginous connective tissue not only to a structural extent but with a mechanical and biological analogy. Poly(3-hydroxybutyrate) (P3HB) matrices were reinforced with 5, 10 and 15 %wt hydroxyapatite (HA) nanoparticles and electrospun into nanocomposite fibrous scaffolds. Mechanical properties of each case were compared with that of a P3HB scaffold produced in the same processing condition. Spectroscopic and morphological observations were used for detecting the interaction quality between the constituents. Nanoparticles rested deep within the fibers of 1 μm in diameter. Chemical interactions of hydrogen bonds linked the constituents through the interface. Maximum elastic modulus and mechanical strength was obtained with the presence of 5%wt hydroxyapatite nanoparticles. Above 10%wt, nanoparticles tended to agglomerate and caused the entity to lose its mechanical performance; however, viscoelasticity interfered at this concentration and lead to a delayed failure. In other words, higher elongation at break and a massive work of rupture was observed at 10%wt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis imposes a tremendous burden on Australia : 1.2 million Australians have osteoporosis and 6.3 million have Osteopenia. In the 2007-08 financial year, 82000 Australians suffered fragility fractures, of Which >17000 were hip fractures. In the 2000-01 financial year, direct costs were estimated at $1.9 billion per year and an additional $5.6 billion on indirect costs. Osteoporosis was designated a National Health Priority Area in 2002; however, implementation of national plans has not yet matched the rhetoric in terms of urgency. Building healthy bones throughout life, the Osteoporosis Australia strategy to prevent osteoporosis throughout the life cycle, presents an evidence-informed set of recommendations for consumers, health care professionals and policymakers. The strategy was adopted by consensus at the Osteoporosis Australia Summit in Sydney, 20 October 2011. Primary objectives throughout the life cycle are: to maximise peak bone mass during childhood and adolescence to prevent premature bone loss and improve or maintain muscle mass, strength and functional capacity in healthy adults to prevent and treat osteoporosis in order to minimise the risk of suffering fragility fractures, and reduce falls risk, in older people. The recommendations focus on three affordable and important interventions to ensure people have adequate calcium intake, vitamin D levels and appropriate, physical activity throughout their lives. Recommendations relevant to all stages of life include: daily dietary calcium intakes should be consistent with Australian and New Zealand guidelines serum levels of vitamin D in the general population should be above 50 nmol/L in winter or early spring for optimal bone health regular weight-bearing physical activity, Muscle strengthening exercises and challenging balance/ mobility activities should be conducted in a safe environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioceramics play an important role in repairing and regenerating bone defects. Annually, more than 500,000 bone graft procedures are performed in the United states and approximately 2.2 million are conducted worldwide. The estimated cost of these procedures approaches $2.5billion per year. Around 60% of the bone graft substitutes available on the market involve bioceramics. It is reported that bioceramics in the world market increase by 9% per year. For this reason, the research of bioceramics has been one of the most active areas during, the past several years. Considering the significant importance of bioceramics, our goal was to compile this book to review the latest research advances in the field of bioceramics. The text also summarizes our work during the past 10 years in an effort to share innovative concepts, design of bioceramisc, and methods for material synthesis and drug delivery. We anticipate that this text will provide some useful information and guidance in the bioceramics field for biomedical engineering researchers and material scientists. Information on novel mesoporous bioactive glasses and silicate-based ceramics for bone regeneration and drug delivery are presented. Mesoporous bioactive glasses have shown multifunctional characteristics of bone regeneration and drug delivery due to their special mesopore structures,whereas silicated-based bioceramics, as typical third-generation biomaterials,possess significant osteostimulation properties. Silica nanospheres with a core-shell structure and specific properties for controllable drug delivery have been carefully reviewed-a variety of advanced synthetic strategies have been developed to construct functional mesoporous silica nanoparticles with a core-shell structure, including hollow, magnetic, or luminescent, and other multifunctional core-shell mesoporous silica nanoparticles. In addition, multifunctional drug delivery systems based on these nanoparticles have been designed and optimized to deliver the drugs into the targeted organs or cells,with a controllable release fashioned by virtue of various internal and external triggers. The novel 3D-printing technique to prepare advanced bioceramic scaffolds for bone tissue engineering applications has been highlighted, including the preparation, mechanical strength, and biological properties of 3D-printed porous scaffolds of calcium phosphate cement and silicate bioceramics. Three-dimensional printing techniques offer improved large-pore structure and mechanical strength. In addition , biomimetic preparation and controllable crystal growth as well as biomineralization of bioceramics are summarized, showing the latest research progress in this area. Finally, inorganic and organic composite materials are reviewed for bone regeneration and gene delivery. Bioactive inorganic and organic composite materials offer unique biological, electrical, and mechanical properties for designing excellent bone regeneration or gene delivery systems. It is our sincere hope that this book will updated the reader as to the research progress of bioceramics and their applications in bone repair and regeneration. It will be the best reward to all the contributors of this book if their efforts herein in some way help reader in any part of their study, research, and career development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal progenitor cells (MPCs) represent an attractive cell population for bone tissue engineering. Their special immunological characteristics suggest that MPCs may be used in an allogenic application. The objective of this study was to compare the regenerative potential of autologous vs. allogenic MPCs in an ovine critical-sized segmental defect model. Ovine MPCs were isolated from bone marrow aspirates, expanded and cultured with osteogenic media for two weeks before implantation. Autologous and allogenic transplantation was performed by using the cell-seeded scaffolds, unloaded scaffolds and the application of autologous bone grafts served as control groups (n=6). Bone healing was assessed twelve weeks after surgery by radiology, micro computed tomography, biomechanical testing and histology. Radiology, biomechanical testing and histology revealed no significant difference in bone formation between the autologous and allogenic group. Both cell groups showed more bone formation than the scaffold alone, whereas the biomechanical data showed no significant differences between the cell-groups and the unloaded scaffolds. The results of the study suggest that scaffold based bone tissue engineering using allogenic cells offers the potential for an off the shelf product. Therefore, the results of this study serve as an important baseline for the translation of the assessed concepts into clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaffolds for bone tissue engineering should be designed to optimize cell migration, enhance new bone formation and give mechanical support. In the present study, we used polycaprolactone-tricalciumphosphate (PCL/TCP) scaffolds with two different fibre lay down patterns which were coated with hydroxyapatite and gelatine as an approach for optimizing bone regeneration in a critical sized calvarial defect. After 12 weeks bone regeneration was quantified using microCT analysis, biomechanical testing and histological evaluation. Notably, the experimental groups containing coated scaffolds showed lower bone formation and lower biomechanical properties within the defect compared to the uncoated scaffolds. Surprisingly, the different lay down pattern of the fibres resulted in different bone formation and biomechanical properties; namely 0/60/120° scaffolds revealed lower bone formation and biomechanical properties compared to the 0/90° scaffolds in all the experimental groups. The different architecture of the scaffold fibres may have an effect on nutrition supply as well as the attachment of the newly formed matrix to the scaffold. Therefore, future bone regeneration strategies utilising scaffolds should consider scaffold architecture as an important factor during the scaffold optimisation stages in order to move closer to a clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adolescent idiopathic scoliosis (AIS) is a deformity of the spine, which may 34 require surgical correction by attaching a rod to the patient’s spine using screws 35 implanted in the vertebral bodies. Surgeons achieve an intra-operative reduction in the 36 deformity by applying compressive forces across the intervertebral disc spaces while 37 they secure the rod to the vertebra. We were interested to understand how the 38 deformity correction is influenced by increasing magnitudes of surgical corrective forces 39 and what tissue level stresses are predicted at the vertebral endplates due to the 40 surgical correction. 41 Methods: Patient-specific finite element models of the osseoligamentous spine and 42 ribcage of eight AIS patients who underwent single rod anterior scoliosis surgery were 43 created using pre-operative computed tomography (CT) scans. The surgically altered 44 spine, including titanium rod and vertebral screws, was simulated. The models were 45 analysed using data for intra-operatively measured compressive forces – three load 46 profiles representing the mean and upper and lower standard deviation of this data 47 were analysed. Data for the clinically observed deformity correction (Cobb angle) were 48 compared with the model-predicted correction and the model results investigated to 49 better understand the influence of increased compressive forces on the biomechanics of 50 the instrumented joints. 51 Results: The predicted corrected Cobb angle for seven of the eight FE models were 52 within the 5° clinical Cobb measurement variability for at least one of the force profiles. 53 The largest portion of overall correction was predicted at or near the apical 54 intervertebral disc for all load profiles. Model predictions for four of the eight patients 55 showed endplate-to-endplate contact was occurring on adjacent endplates of one or 56 more intervertebral disc spaces in the instrumented curve following the surgical loading 57 steps. 58 Conclusion: This study demonstrated there is a direct relationship between intra-59 operative joint compressive forces and the degree of deformity correction achieved. The 60 majority of the deformity correction will occur at or in adjacent spinal levels to the apex 61 of the deformity. This study highlighted the importance of the intervertebral disc space 62 anatomy in governing the coronal plane deformity correction and the limit of this 63 correction will be when bone-to-bone contact of the opposing vertebral endplates 64 occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current older adult capability data-sets fail to account for the effects of everyday environmental conditions on capability. This article details a study that investigates the effects of everyday ambient illumination conditions (overcast, 6000 lx; in-house lighting, 150 lx and street lighting, 7.5 lx) and contrast (90%, 70%, 50% and 30%) on the near visual acuity (VA) of older adults (n= 38, 65-87 years). VA was measured at a 1-m viewing distance using logarithm of minimum angle of resolution (LogMAR) acuity charts. Results from the study showed that for all contrast levels tested, VA decreased by 0.2 log units between the overcast and street lighting conditions. On average, in overcast conditions, participants could detect detail around 1.6 times smaller on the LogMAR charts compared with street lighting. VA also significantly decreased when contrast was reduced from 70% to 50%, and from 50% to 30% in each of the ambient illumination conditions. Practitioner summary: This article presents an experimental study that investigates the impact of everyday ambient illumination levels and contrast on older adults' VA. Results show that both factors have a significant effect on their VA. Findings suggest that environmental conditions need to be accounted for in older adult capability data-sets/designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire "organ" bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis.