321 resultados para Automatic selection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past two decades, the selection, optimization, and compensation (SOC) model has been applied in the work context to investigate antecedents and outcomes of employees' use of action regulation strategies. We systematically review, meta-analyze, and critically discuss the literature on SOC strategy use at work and outline directions for future research and practice. The systematic review illustrates the breadth of constructs that have been studied in relation to SOC strategy use, and that SOC strategy use can mediate and moderate relationships of person and contextual antecedents with work outcomes. Results of the meta-analysis show that SOC strategy use is positively related to age (rc = .04), job autonomy (rc = .17), self-reported job performance (rc = .23), non-self-reported job performance (rc = .21), job satisfaction (rc = .25), and job engagement (rc = .38), whereas SOC strategy use is not significantly related to job tenure, job demands, and job strain. Overall, our findings underline the importance of the SOC model for the work context, and they also suggest that its measurement and reporting standards need to be improved to become a reliable guide for future research and organizational practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The business value of information technology (IT) is realized through the continuous use of IT subsequent to users’ adoption. Understanding post-adoptive IT usage is useful in realizing potential IT business value. Most previous research on post-adoptive IT usage, however, dismisses the unintentional and unconscious aspects of usage behavior. This paper advances understanding of the unintentional, unconscious, and thereby automatic usage of IT features during the post-adoptive stage. Drawing from Social Psychology literature, we argue human behaviors can be triggered by environmental cues and directed by the person’s mental goals, thereby operating without a person’s consciousness and intentional will. On this basis, we theorize the role of a user’s innovativeness goal, as the desired state of an act to innovate, in directing the user’s unintentional, unconscious, and automatic post-adoptive IT feature usage behavior. To test the hypothesized mechanisms, a human experiment employing a priming technique, is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most difficult operation in the flood inundation mapping using optical flood images is to separate fully inundated areas from the ‘wet’ areas where trees and houses are partly covered by water. This can be referred as a typical problem the presence of mixed pixels in the images. A number of automatic information extraction image classification algorithms have been developed over the years for flood mapping using optical remote sensing images. Most classification algorithms generally, help in selecting a pixel in a particular class label with the greatest likelihood. However, these hard classification methods often fail to generate a reliable flood inundation mapping because the presence of mixed pixels in the images. To solve the mixed pixel problem advanced image processing techniques are adopted and Linear Spectral unmixing method is one of the most popular soft classification technique used for mixed pixel analysis. The good performance of linear spectral unmixing depends on two important issues, those are, the method of selecting endmembers and the method to model the endmembers for unmixing. This paper presents an improvement in the adaptive selection of endmember subset for each pixel in spectral unmixing method for reliable flood mapping. Using a fixed set of endmembers for spectral unmixing all pixels in an entire image might cause over estimation of the endmember spectra residing in a mixed pixel and hence cause reducing the performance level of spectral unmixing. Compared to this, application of estimated adaptive subset of endmembers for each pixel can decrease the residual error in unmixing results and provide a reliable output. In this current paper, it has also been proved that this proposed method can improve the accuracy of conventional linear unmixing methods and also easy to apply. Three different linear spectral unmixing methods were applied to test the improvement in unmixing results. Experiments were conducted in three different sets of Landsat-5 TM images of three different flood events in Australia to examine the method on different flooding conditions and achieved satisfactory outcomes in flood mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.