333 resultados para optical property
Resumo:
Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp2 carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 105 S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.
Resumo:
Tracheal cartilage has been widely regarded as a linear elastic material either in experimental studies or in analytic and numerical models. However, it has been recently demonstrated that, like other fiber-oriented biological tissues, tracheal cartilage is a nonlinear material, which displays higher strength in compression than in extension. Considering the nonlinearity requires a more complex theoretical frame work and costs more to simulate. This study aims to quantify the deviation due to the simplified treatment of the tracheal cartilage as a linear material. It also evaluates the improved accuracy gained by considering the nonlinearity. Pig tracheal rings were used to exam the mechanical properties of cartilage and muscular membrane. By taking into account the asymmetric shape of tracheal cartilage, the collapse behavior of complete rings was simulated, and the compliance of airway and stress in the muscular membrane were discussed. The results obtained were compared with those assuming linear mechanical properties. The following results were found: (1) Models based on both types of material properties give a small difference in representing collapse behavior; (2) regarding compliance, the relative difference is big, ranging from 10 to 40% under negative pressure conditions; and (3) the difference in determining stress in the muscular membrane is small too: <5%. In conclusion, treating tracheal cartilage as a linear material will not cause big deviations in representing the collapse behavior, and mechanical stress in the muscular part, but it will induce a big deviation in predicting the compliance, particularly when the transmural pressure is lower than -0.5 kPa. The results obtained in this study may be useful in both understanding the collapse behavior of trachea and in evaluating the error induced by the simplification of treating the tracheal cartilage as a linear elastic material.
Resumo:
Background: Despite being the stiffest airway of the bronchial tree, the trachea undergoes significant deformation due to intrathoracic pressure during breathing. The mechanical properties of the trachea affect the flow in the airway and may contribute to the biological function of the lung. Method: A Fung-type strain energy density function was used to investigate the nonlinear mechanical behavior of tracheal cartilage. A bending test on pig tracheal cartilage was performed and a mathematical model for analyzing the deformation of tracheal cartilage was developed. The constants included in the strain energy density function were determined by fitting the experimental data. Result: The experimental data show that tracheal cartilage is a nonlinear material displaying higher strength in compression than in tension. When the compression forces varied from -0.02 to -0.03 N and from -0.03 to -0.04 N, the deformation ratios were 11.03±2.18% and 7.27±1.59%, respectively. Both were much smaller than the deformation ratios (20.01±4.49%) under tension forces of 0.02 to 0.01 N. The Fung-type strain energy density function can capture this nonlinear behavior very well, whilst the linear stress-strain relation cannot. It underestimates the stability of trachea by exaggerating the displacement in compression. This study may improve our understanding of the nonlinear behavior of tracheal cartilage and it may be useful for the future study on tracheal collapse behavior under physiological and pathological conditions.
Resumo:
In open-cut strip mining, waste material is placed in-pit to minimise operational mine costs. Slope failures in these spoil piles pose a significant safety risk to personnel, along with a financial risk from loss of equipment and scheduling delays. It has been observed that most spoil pile failures occur when the pit has been previously filled with water and then subsequently dewatered. The failures are often initiated at the base of spoil piles where the material can undergo significant slaking (disintegration) over time due to overburden pressure and water saturation. It is important to understand how the mechanical properties of base spoil material are affected by slaking when designing safe spoil pile slope angles, heights, and dewatering rates. In this study, fresh spoil material collected from a coal mine in Brown Basin Coalfield of Queensland, Australia was subjected to high overburden pressure (0 – 900 kPa) under saturated condition and maintained over a period of time (0 – 6 months) allowing the material to slake. To create the above conditions, laboratory designed pressure chambers were used. Once a spoil sample was slaked under certain overburden pressure over a period of time, it was tested for classification, permeability, and strength properties. Results of this testing program suggested that the slaking of saturated coal mine spoil increase with overburden pressure and the time duration over which the overburden pressure was maintained. Further, it was observed that shear strength and permeability of spoil decreased with increase in spoil slaking.
Resumo:
Mitigating and adapting to the effects of climate change will require innovation and the development of new technologies. Intellectual property laws have a key part to play in the global transfer of climate technologies. However, failures to properly utilize flexibilities in intellectual property regimes or comply with technology transfer obligations under international climate change agreements calls for a human rights based analysis of climate technology transfer. Climate change is an unprecedented challenge and requires unprecedented strategies. Given the substantial impact of climate change on all of humanity and the ethical imperative to act, a complete rethink of traditional intellectual property approaches is warranted. This report proposes a series of intellectual property law policy options, through a human rights framework, aimed at promoting access to technologies to reduce the human suffering caused by climate change.
Resumo:
Australia's history of developing and managing the intellectual property rights of domestic innovations is – at best – mixed. The relevant immaturity of Australia's public sector commercialisation infrastructure has, over recent decades, been the subject of both stinging academic commentary and not insubstantial juridical disbelief. That said, improvements have been observed, and increasingly, private sector involvement in public sector innovation has allowed for a deepening refinement of domestic approaches to IP retention and ongoing management. Rather than a bare critique of Australia's IP management track-record, or a call for specific law reform, this manual engages at a more practical level some of the foundational questions that ought be asked by entities involved in the 'cleantech' industries. Beginning simply at what is IP and why it matters, this manual examines the models of IP management available to market participants around the world. The process of IP management is defined and assessed through a commercial lens; assessing the 'pros' and 'cons' of each management choice with a view to equipping the reader to determine which approach may be best adapted to their given clean tech project. The manual concludes with a brief survey of alternative models of Intellectual Property management, including relevant examples from overseas and prominent suggestions arising out of the academic discourse. It appears inevitable that the global warming challenge will prompt specific legislative, regulatory and multi-lateral responses by nation states, however, the ultimate form of any such response remains a highly contested political and social issue. Accordingly, the structure of this manual, and the discussion points raised herein, seek introduce the reader to some of the more contentious debates occurring around the world at the intersection between IP and climate change.
Resumo:
Layered graphitic materials exhibit new intriguing electronic structure and the search for new types of two-dimensional (2D) monolayer is of importance for the fabrication of next generation miniature electronic and optoelectronic devices. By means of density functional theory (DFT) computations, we investigated in detail the structural, electronic, mechanical and optical properties of the single-layer bismuth iodide (BiI3) nanosheet. Monolayer BiI3 is dynamically stable as confirmed by the computed phonon spectrum. The cleavage energy (Ecl) and interlayer coupling strength of bulk BiI3 are comparable to the experimental values of graphite, which indicates that the exfoliation of BiI3 is highly feasible. The obtained stress-strain curve shows that the BiI3 nanosheet is a brittle material with a breaking strain of 13%. The BiI3 monolayer has an indirect band gap of 1.57 eV with spin orbit coupling (SOC), indicating its potential application for solar cells. Furthermore, the band gap of BiI3 monolayer can be modulated by biaxial strain. Most interestingly, interfacing electrically active graphene with monolayer BiI3 nanosheet leads to enhanced light absorption compared to that in pure monolayer BiI3 nanosheet, highlighting its great potential applications in photonics and photovoltaic solar cells.
Resumo:
Taking an interdisciplinary approach unmatched by any other book on this topic, this thoughtful Handbook considers the international struggle to provide for proper and just protection of Indigenous intellectual property (IP). In light of the United Nations Declaration on the Rights of Indigenous Peoples 2007, expert contributors assess the legal and policy controversies over Indigenous knowledge in the fields of international law, copyright law, trademark law, patent law, trade secrets law, and cultural heritage. The overarching discussion examines national developments in Indigenous IP in the United States, Canada, South Africa, the European Union, Australia, New Zealand, and Indonesia. The Handbook provides a comprehensive overview of the historical origins of conflict over Indigenous knowledge, and examines new challenges to Indigenous IP from emerging developments in information technology, biotechnology, and climate change. Practitioners and scholars in the field of IP will learn a great deal from this Handbook about the issues and challenges that surround just protection of a variety of forms of IP for Indigenous communities. Preface The Legacy of David Unaipon Matthew Rimmer Introduction: Mapping Indigenous Intellectual Property Matthew Rimmer PART I INTERNATIONAL LAW 1. The United Nations Declaration on the Rights of Indigenous Peoples: A Human Rights Framework for Indigenous Intellectual Property Mauro Barelli 2. The WTO, The TRIPS Agreement and Traditional Knowledge Tania Voon 3. The World Intellectual Property Organization and Traditional Knowledge Sara Bannerman 4. The World Indigenous Network: Rio+20, Intellectual Property, Indigenous Knowledge, and Sustainable Development Matthew Rimmer PART II COPYRIGHT LAW AND RELATED RIGHTS 5. Government Man, Government Painting? David Malangi and the 1966 One-Dollar Note Stephen Gray 6. What Wandjuk Wanted Martin Hardie 7. Avatar Dreaming: Indigenous Cultural Protocols and Making Films Using Indigenous Content Terri Janke 8. The Australian Resale Royalty for Visual Artists: Indigenous Art and Social Justice Robert Dearn and Matthew Rimmer PART III TRADE MARK LAW AND RELATED RIGHTS 9. Indigenous Cultural Expression and Registered Designs Maree Sainsbury 10. The Indian Arts and Crafts Act: The Limits of Trademark Analogies Rebecca Tushnet 11. Protection of Traditional Cultural Expressions within the New Zealand Intellectual Property Framework: A Case Study of the Ka Mate Haka Sarah Rosanowski 12 Geographical Indications and Indigenous Intellectual Property William van Caenegem PART IV PATENT LAW AND RELATED RIGHTS 13. Pressuring ‘Suspect Orthodoxy’: Traditional Knowledge and the Patent System Chidi Oguamanam, 14. The Nagoya Protocol: Unfinished Business Remains Unfinished Achmad Gusman Siswandi 15. Legislating on Biopiracy in Europe: Too Little, too Late? Angela Daly 16. Intellectual Property, Indigenous Knowledge, and Climate Change Matthew Rimmer PART V PRIVACY LAW AND IDENTITY RIGHTS 17. Confidential Information and Anthropology: Indigenous Knowledge and the Digital Economy Sarah Holcombe 18. Indigenous Cultural Heritage in Australia: The Control of Living Heritages Judith Bannister 19. Dignity, Trust and Identity: Private Spheres and Indigenous Intellectual Property Bruce Baer Arnold 20. Racial Discrimination Laws as a Means of Protecting Collective Reputation and Identity David Rolph PART VI INDIGENOUS INTELLECTUAL PROPERTY: REGIONAL PERSPECTIVES 21. Diluted Control: A Critical Analysis of the WAI262 Report on Maori Traditional Knowledge and Culture Fleur Adcock 22. Traditional Knowledge Governance Challenges in Canada Jeremy de Beer and Daniel Dylan 23. Intellectual Property protection of Traditional Knowledge and Access to Knowledge in South Africa Caroline Ncube 24. Traditional Knowledge Sovereignty: The Fundamental Role of Customary Law in Protection of Traditional Knowledge Brendan Tobin Index
Resumo:
The electronic and optical properties of anatase titanium dioxide (TiO2), co-doped by nitrogen (N) and lithium (Li), have been investigated by density functional theory plus Hubbard correction term U, namely DFT+U. It is found that Li-dopants can effectively balance the net charges brought by N-dopants and shift the local state to the top of valence band. Depending on the distribution of dopants, the adsorption edges of TiO2 may be red- or blue-shifted, being consistent with recent experimental observations.
Resumo:
This submission responds to the document Intellectual Property Arrangements Issues Paper (Issues Paper) released by the Productivity Commission in October 2015 for public consultation and input by 30 November 2015. The API is grateful for the extension of time granted by the Commission to complete and lodge this submission. The overall need for an inquiry into intellectual property is supported by API. In particular it is noted with approval that the Commission states in its Issues Paper that it is to consider the appropriate balance between “incentives for innovation and investments, and the interests of both individuals and businesses in assessing products”.1 However, API is of the view that intellectual property in the area of real property presents a number of issues which are not fully canvassed in the abovementioned Issues Paper. Intellectual property embedded in valuation and other property-related reports of API members involves the acquisition of information which may possibly be confidential. Yet, when engaged in banks and financial institutions the intellectual property in such valuations and/ or reports is commonly required to be passed to the client bank or financial institution. In the Issues Paper it is proposed that there are seven different forms of intellectual property rights.2 It is the view of API that an eight form exists, namely private agreements. The Issues Paper, however, regards private agreements between firms as alternatives to intellectual property rights. The API considers that “secrecy or confidentiality arrangements”3 as identified in the Issues Paper form a much larger part of the manner in which intellectual property is maintained in Australia for the purposes of trade secrecy or more often, financial confidentiality...
Resumo:
This chapter addresses the areas more commonly found in everyday practice (NB circuit layouts and plant breeder's rights are not covered). Importantly, IP law has become very specialised, and as such one for which practitioners will need expertise or access to relevant experts in order to properly provide advice. The following therefore is an overview only of relevant issues.
Resumo:
Radio frequency (R.F.) glow discharge polyterpenol thin films were prepared on silicon wafers and irradiated with I10+ ions to fluences of 1 × 1010 and 1 × 1012 ions/cm2. Post-irradiation characterisation of these films indicated the development of well-defined nano-scale ion entry tracks, highlighting prospective applications for ion irradiated polyterpenol thin films in a variety of membrane and nanotube-fabrication functions. Optical characterisation showed the films to be optically transparent within the visible spectrum and revealed an ability to selectively control the thin film refractive index as a function of fluence. This indicates that ion irradiation processing may be employed to produce plasma-polymer waveguides to accommodate a variety of wavelengths. XRR probing of the substrate-thin film interface revealed interfacial roughness values comparable to those obtained for the uncoated substrate's surface (i.e., both on the order of 5 Å), indicating minimal substrate etching during the plasma deposition process.
Resumo:
By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed hysteresis behavior of capacitance-voltage (C-V) characteristics of IZO/polyterpenol (PT)/C₆₀/pentacene/Au diodes, where PT layer is actively working as a hole-transport electron-blocking layer. The EFISHG measurement verified the presence of interface accumulated charges in the diodes, and showed that a space charge electric field from accumulated excess electrons (holes) that remain at the PT/C₆₀ (C₆₀/pentacene) interface is responsible for the hysteresis loop observed in the C-V characteristics.
Resumo:
The carrier blocking property of polyterpenol thin films derived from non-synthetic precursor is studied using Electric Field Induced Optical Second Harmonic Generation (EFISHG) technique that can directly probe carrier motion in organic materials. A properly biased double-layer MIM device with a structure of indium zinc oxide (IZO)/polyterpenol/C₆₀/Al shows that by incorporating the polyterpenol thin film, the electron transport can be blocked while the hole transport is allowed. The inherent electron blocking hole transport property is verified using Al/C₆₀/Alq3/polyterpenol/IZO and Al/Alq3/polyterpenol/IZO structures. The rectifying property of polyterpenol is very promising and can be utilized in the fabrication of many organic devices.
Resumo:
The development of novel organic polymer thin films is essential for the advancement of many emerging fields including organic electronics and biomedical coatings. In this study, the effect of synthesis conditions, namely radio frequency (rf) deposition power, on the material properties of polyterpenol thin films derived from nonsynthetic environmentally friendly monomer was investigated. At lower deposition powers, the polyterpenol films preserved more of the original monomer constituents, such as hydroxy functional groups; however, they were also softer and more hydrophilic compared to polymers fabricated at higher power. Enhanced monomer fragmentation and consequent reduction in the presence of the polar groups in the structure of the high-power samples reduced their optical band gap value from 2.95 eV for 10 W to 2.64 eV for 100 W. Regardless of deposition power, all samples were found to be optically transparent with smooth, defect-free, and homogenous surfaces.