483 resultados para layer-order-orientation
Resumo:
The commentaries on my original article ‘The Emergence of Critical Health Psychology: Can it Contribute to Promoting Public Health?’ provided engaging views on what critical health psychology (CHP) actually is and does. Consideration of each commentary gave rise to numerous themes and generated my own further thoughts on CHP which I frame as five key areas of a continuing dialogue: (1) reflexivity and CHP; (2) health psychology: pluralist or not? (3) CHP as a moral project; (4) social action and change; and (5) strengthening critical approaches to health. Throughout I highlight concepts and issues that are integral to the capacity of CHP to create a shift towards a reinvigorated action-orientated agenda.
Resumo:
Given global demand for new infrastructure, governments face substantial challenges in funding new infrastructure and delivering Value for Money (VfM). As part of the background to this challenge, a critique is given of current practice in the selection of the approach to procure major public sector infrastructure in Australia and which is akin to the Multi-Attribute Utility Approach (MAUA). To contribute towards addressing the key weaknesses of MAUA, a new first-order procurement decision-making model is presented. The model addresses the make-or-buy decision (risk allocation); the bundling decision (property rights incentives), as well as the exchange relationship decision (relational to arms-length exchange) in its novel approach to articulating a procurement strategy designed to yield superior VfM across the whole life of the asset. The aim of this paper is report on the development of this decisionmaking model in terms of the procedural tasks to be followed and the method being used to test the model. The planned approach to testing the model uses a sample of 87 Australian major infrastructure projects in the sum of AUD32 billion and deploys a key proxy for VfM comprising expressions of interest, as an indicator of competition.
Resumo:
Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.
Resumo:
The optimisation study of the fabrication of a compact TiO2 blocking layer (via Spray Pyrolysis Deposition) for poly (3-hexylthiopene) (P3HT) for Solid State Dye Sensitized Solar Cells (SDSCs) is reported. We used a novel spray TiO2 precursor solution composition obtained by adding acetylacetone to a conventional formulation (Diisopropoxytitanium bis (acetylacetonate) in ethanol). By Scanning Electron Microscopy a TiO2 layer with compact morphology and thickness of around 100 nmis shown. Through a Tafel plot analysis an enhancement of the device diode-like behaviour induced by the acetylacetone blocking layer respect to the conventional one is observed. Significantly, the device fabricatedwith the acetylacetone blocking layer shows an overall increment of the cell performance with respect to the cellwith the conventional one (DJsc/Jsc = +13.8%, DFF/FF = +39.7%, DPCE/PCE = +55.6%). A conversion efficiency optimumis found for 15 successive spray cycles where the diode-like behaviour of the acetylacetone blocking layer is more effective. Over three batches of cells (fabricated with P3HT and dye D35) an average conversion efficiency value of 3.9% (under a class A sun simulator with 1 sun A.M. 1.5 illumination conditions) was measured. From the best cell we fabricated a conversion efficiency value of 4.5% was extracted. This represents a significant increment with respect to previously reported values for P3HT/dye D35 based SDSCs.
Resumo:
Higher-order thinking has featured persistently in the reform agenda for science education. The intended curriculum in various countries sets out aspirational statements for the levels of higher-order thinking to be attained by students. This study reports the extent to which chemistry examinations from four Australian states align and facilitate the intended higher-order thinking skills stipulated in curriculum documents. Through content analysis, the curriculum goals were identified for each state and compared to the nature of question items in the corresponding examinations. Categories of higher-order thinking were adapted from the OECD’s PISA Science test to analyze question items. There was considerable variation in the extent to which the examinations from the states supported the curriculum intent of developing and assessing higher-order thinking. Generally, examinations that used a marks-based system tended to emphasize lower-order thinking, with a greater distribution of marks allocated for lower-order thinking questions. Examinations associated with a criterion-referenced examination tended to award greater credit for higher-order thinking questions. The level of complexity of chemistry was another factor that limited the extent to which examination questions supported higher-order thinking. Implications from these findings are drawn for the authorities responsible for designing curriculum and assessment procedures and for teachers.
Resumo:
Recent advances in the area of ‘Transformational Government’ position the citizen at the centre of focus. This paradigm shift from a department-centric to a citizen-centric focus requires governments to re-think their approach to service delivery, thereby decreasing costs and increasing citizen satisfaction. The introduction of franchises as a virtual business layer between the departments and their citizens is intended to provide a solution. Franchises are structured to address the needs of citizens independent of internal departmental structures. For delivering services online, governments pursue the development of a One-Stop Portal, which structures information and services through those franchises. Thus, each franchise can be mapped to a specific service bundle, which groups together services that are deemed to be of relevance to a specific citizen need. This study focuses on the development and evaluation of these service bundles. In particular, two research questions guide the line of investigation of this study: Research Question 1): What methods can be used by governments to identify service bundles as part of governmental One-Stop Portals? Research Question 2): How can the quality of service bundles in governmental One-Stop Portals be evaluated? The first research question asks about the identification of suitable service bundle identification methods. A literature review was conducted, to, initially, conceptualise the service bundling task, in general. As a consequence, a 4-layer model of service bundling and a morphological box were created, detailing characteristics that are of relevance when identifying service bundles. Furthermore, a literature review of Decision-Support Systems was conducted to identify approaches of relevance in different bundling scenarios. These initial findings were complemented by targeted studies of multiple leading governments in the e-government domain, as well as with a local expert in the field. Here, the aim was to identify the current status of online service delivery and service bundling in practice. These findings led to the conceptualising of two service bundle identification methods, applicable in the context of Queensland Government: On the one hand, a provider-driven approach, based on service description languages, attributes, and relationships between services was conceptualised. As well, a citizen-driven approach, based on analysing the outcomes from content identification and grouping workshops with citizens, was also conceptualised. Both methods were then applied and evaluated in practice. The conceptualisation of the provider-driven method for service bundling required the initial specification of relevant attributes that could be used to identify similarities between services called relationships; these relationships then formed the basis for the identification of service bundles. This study conceptualised and defined seven relationships, namely ‘Co-location’, ‘Resource’, ‘Co-occurrence’, ‘Event’, ‘Consumer’, ‘Provider’, and ‘Type’. The relationships, and the bundling method itself, were applied and refined as part of six Action Research cycles in collaboration with the Queensland Government. The findings show that attributes and relationships can be used effectively as a means for bundle identification, if distinct decision rules are in place to prescribe how services are to be identified. For the conceptualisation of the citizen-driven method, insights from the case studies led to the decision to involve citizens, through card sorting activities. Based on an initial list of services, relevant for a certain franchise, participating citizens grouped services according to their liking. The card sorting activity, as well as the required analysis and aggregation of the individual card sorting results, was analysed in depth as part of this study. A framework was developed that can be used as a decision-support tool to assist with the decision of what card sorting analysis method should be utilised in a given scenario. The characteristic features associated with card sorting in a government context led to the decision to utilise statistical analysis approaches, such as cluster analysis and factor analysis, to aggregate card sorting results. The second research question asks how the quality of service bundles can be assessed. An extensive literature review was conducted focussing on bundle, portal, and e-service quality. It was found that different studies use different constructs, terminology, and units of analysis, which makes comparing these models a difficult task. As a direct result, a framework was conceptualised, that can be used to position past and future studies in this research domain. Complementing the literature review, interviews conducted as part of the case studies with leaders in e-government, indicated that, typically, satisfaction is evaluated for the overall portal once the portal is online, but quality tests are not conducted during the development phase. Consequently, a research model which appropriately defines perceived service bundle quality would need to be developed from scratch. Based on existing theory, such as Theory of Reasoned Action, Expectation Confirmation Theory, and Theory of Affordances, perceived service bundle quality was defined as an inferential belief. Perceived service bundle quality was positioned within the nomological net of services. Based on the literature analysis on quality, and on the subsequent work of a focus group, the hypothesised antecedents (descriptive beliefs) of the construct and the associated question items were defined and the research model conceptualised. The model was then tested, refined, and finally validated during six Action Research cycles. Results show no significant difference in higher quality or higher satisfaction among users for either the provider-driven method or for the citizen-driven method. The decision on which method to choose, it was found, should be based on contextual factors, such as objectives, resources, and the need for visibility. The constructs of the bundle quality model were examined. While the quality of bundles identified through the citizen-centric approach could be explained through the constructs ‘Navigation’, ‘Ease of Understanding’, and ‘Organisation’, bundles identified through the provider-driven approach could be explained solely through the constructs ‘Navigation’ and ‘Ease of Understanding’. An active labelling style for bundles, as part of the provider-driven Information Architecture, had a larger impact on ‘Quality’ than the topical labelling style used in the citizen-centric Information Architecture. However, ‘Organisation’, reflecting the internal, logical structure of the Information Architecture, was a significant factor impacting on ‘Quality’ only in the citizen-driven Information Architecture. Hence, it was concluded that active labelling can compensate for a lack of logical structure. Further studies are needed to further test this conjecture. Such studies may involve building alternative models and conducting additional empirical research (e.g. use of an active labelling style for the citizen-driven Information Architecture). This thesis contributes to the body of knowledge in several ways. Firstly, it presents an empirically validated model of the factors explaining and predicting a citizen’s perception of service bundle quality. Secondly, it provides two alternative methods that can be used by governments to identify service bundles in structuring the content of a One-Stop Portal. Thirdly, this thesis provides a detailed narrative to suggest how the recent paradigm shift in the public domain, towards a citizen-centric focus, can be pursued by governments; the research methodology followed by this study can serve as an exemplar for governments seeking to achieve a citizen-centric approach to service delivery.
Resumo:
Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.
Resumo:
Wireless networked control systems (WNCSs) have been widely used in the areas of manufacturing and industrial processing over the last few years. They provide real-time control with a unique characteristic: periodic traffic. These systems have a time-critical requirement. Due to current wireless mechanisms, the WNCS performance suffers from long time-varying delays, packet dropout, and inefficient channel utilization. Current wirelessly networked applications like WNCSs are designed upon the layered architecture basis. The features of this layered architecture constrain the performance of these demanding applications. Numerous efforts have attempted to use cross-layer design (CLD) approaches to improve the performance of various networked applications. However, the existing research rarely considers large-scale networks and congestion network conditions in WNCSs. In addition, there is a lack of discussions on how to apply CLD approaches in WNCSs. This thesis proposes a cross-layer design methodology to address the issues of periodic traffic timeliness, as well as to promote the efficiency of channel utilization in WNCSs. The design of the proposed CLD is highlighted by the measurement of the underlying network condition, the classification of the network state, and the adjustment of sampling period between sensors and controllers. This period adjustment is able to maintain the minimally allowable sampling period, and also maximize the control performance. Extensive simulations are conducted using the network simulator NS-2 to evaluate the performance of the proposed CLD. The comparative studies involve two aspects of communications, with and without using the proposed CLD, respectively. The results show that the proposed CLD is capable of fulfilling the timeliness requirement under congested network conditions, and is also able to improve the channel utilization efficiency and the proportion of effective data in WNCSs.
Resumo:
The adsorption of carbon dioxide and nitrogen molecules on aluminum nitride (AlN) nanostructures has been explored using first-principle computational methods. Optimized configurations corresponding to physisorption and, subsequentially, chemisorption of CO2 are identified, in contrast to N2, for which only a physisorption structure is found. Transition-state searches imply a low energy barrier between the physisorption and chemisorption states for CO2 such that the latter is accessible and thermodynamically favored at room temperature. The effective binding energy of the optimized chemisorption structure is apparently larger than those for other CO2 adsorptive materials, suggesting the potential for application of aluminum nitride nanostructures for carbon dioxide capture and storage.
Resumo:
In this paper, the formation of heteroepitaxial interfacial layers was investigated by molecular dynamics simulation of soft silver particles landing on the (001) surface of single-crystal copper. In our simulations, the clusters Ag13, Ag55, Ag147 and Ag688 were chosen as projectiles. A small cluster will rearrange into an f.c.c. structure when it is supported on the substrate, due to the large value of its surface/volume ratio. Contact epitaxy appeared in large clusters. The characteristic structure of an epitaxial layer in large silver cluster shows the 〈111〉 direction to be the preferential orientation of heteroepitaxial layers on the surface because of the lattice mismatch between the cluster and the substrate. This was confirmed by studying soft landing events in other systems (Au/Cu and Al/Ni).
Resumo:
Peer review is a reflective process which allows us to formalise, and gain maximum benefit from, collegial feedback on our professional performance. It is also a process that encourages us to engage in cycles of planning, acting, recording and reflection which are familiar components of action learning and action research. Entering into these cycles within the peer-review framework is a powerful and cost-effective means of facilitating professional development which is readily adapted to the library context. In 1996, a project implementing peer review, in order to improve client interaction at the reference desk, was completed at the University of Southern Queensland (USQ) Library. For that project we developed a set of guidelines for library staff involved in peer review. These guidelines explained the value of peer review, and described its principles and purposes. We also devised strategies to assist staff as they prepared for the experience of peer review, engaged in the process and reflected on the outcomes. A number of benefits were identified; the peer-review process enhanced team spirit, enhanced client-orientation, and fostered collaborative efforts in improving the reference service. It was also relatively inexpensive to implement. In this paper we will discuss the nature of peer review and its importance to library and information professionals. We will also share the guidelines we developed, and discuss the implementation and outcomes of the peer review project at the University of Southern Queensland. We will conclude by discussing the benefits perceived and the issues that arose in the USQ context, and by suggesting a range of other aspects of library service in which peer-review could be implemented.
Resumo:
This paper presents an experimental investigation of the flexural and shear bond characteristics of thin layer polymer cement mortared concrete masonry. It is well known that the bond characteristics of masonry depend upon the mortar type, the techniques of dispersion of mortar and the surface texture of concrete blocks; there exists an abundance of literature on the conventional 10 mm thick cement mortared masonry bond; however, 1-4 mm thick polymer cement mortared masonry bond is not yet well researched. This paper reports a study on the examination of the effect of mortar compositions, dispersion methods and unit surface textures to the flexural and shear bond characteristics of thin layer mortared concrete masonry. A non-contact digital image correlation method was adopted for the measurement of strains at the unit-mortar interface in this research. All mortar joints have been carefully prepared to ensure achievement of the desired thin layer mortar thickness on average. The results exhibit that the bond strength of thin mortar layered concrete masonry with polymer cement mortar is higher than that of the conventional masonry; moreover the unit surface texture and the mortar dispersion methods are found to have significant influence on the flexural and shear bond characteristics. From the experimental results, a correlation between the flexural and the shear bond strengths has been determined and is presented in this paper.
Resumo:
An innovative structure — nanozeolites (as shell) grown with preferred orientation on ceramic nanofibers (as core) was proposed. The Y-zeolite nanocrystals on TiO2 nanofibers exhibited superior ability to catalyze acetalization and carboxylation reaction, achieving high conversions to desired products with selectivity of 100% under moderate conditions.
Resumo:
Residential dissonance refers to the mismatch in land-use patterns between individuals’ preferred residential neighbourhood type and the type of neighbourhood in which they currently reside. Current knowledge regarding the impact of residential dissonance is limited to short-term travel behaviours in urban vs. suburban, and rural vs. urban areas. Although the prevailing view is that dissonants adjust their orientation and lifestyle around their surrounding land use over time, empirical evidence is lacking to support this proposition. This research identifies both short-term mode choice behaviour and medium-term mode shift behaviour of dissonants in transit oriented development (TODs) vs. non-TOD areas in Brisbane, Australia. Natural groupings of neighbourhood profiles (e.g. residential density, land use diversity, intersection density, cul-de-sac density, and public transport accessibility levels) of 3957 individuals were identified as living either in a TOD (510 individuals) or non-TOD (3447 individuals) areas in Brisbane using the TwoStep cluster analysis technique. Levels of dissonance were measured based on a factor analysis of 16 items representing the travel attitudes/preferences of individuals. Two multinomial logistic (MNL) regression models were estimated to understand mode choice behaviour of (1) TOD dissonants, and (2) non-TOD dissonants in 2009, controlling for socio-demographics and environmental characteristics. Two additional MNL regression models were estimated to investigate mode shift behaviour of (3) TOD dissonants, and (4) non-TOD dissonants between 2009 and 2011, also controlling for socio-demographic, changes in socio-demographic, and built environmental factors. The findings suggest that travel preference is relatively more influential in transport mode choice decisions compared with built environment features. Little behavioural evidence was found to support the adjustment of a dissonant orientation toward a particular land use feature and mode accessibility they represent (e.g. a modal shift to greater use of the car for non-TOD dissonants). TOD policies should focus on reducing the level of dissonance in TODs in order to enhance transit ridership.
Resumo:
High-quality YBa2Cu3O7-δ films grown on (001) single-crystal Y-ZrO2 substrates by pulsed laser deposition have been studied as a function of substrate temperature using transmission electron microscopy. A transition from epitaxial films to c-axis oriented polycrystalline films was observed at 740°C. An intermediate, polycrystalline, BaZrO3 layer was formed from a reaction between the film and the substrate. A dominant orientation relationship of [001] YBCO//[001]int. layer//[001]YSZ and [110] YBCO//[110]int. layer//[100]YSZ was observed. The formation of grain boundaries in the films resulted in an increased microwave surface resistance and a decreased critical-current density. The superconducting transition temperature remained fairly constant at about 90 K.