616 resultados para bone disease
Resumo:
Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be inappropriate for transplantation strategies.
Resumo:
Increasing the number of bone marrow (BM) donors is important to ensure sufficient diversity on BM registries to meet the needs of patients. This study used an experimental approach to test the hypothesis that providing information about the risks of BM donation to allay unsubstantiated fears would reduce male and female participants’ perceptions of risk for donation and joining the Australian BM Donor Registry (ABMDR). Males’ and females’ intentions to register on the ABMDR, their attitudes, norms, and perceived behavioural control (efficacy) in relation to registering were explored also. Participants were allocated randomly to either a risk (exposed to risk information about BM donation) or no risk(not exposed to risk information) condition. In partial support of hypotheses, exposure to risk information did reduce perceived risk for registering on the ABMDR for males only. Participants in the risk condition also demonstrated lower scores on attitude (males only) and intention compared to participants in the no risk condition. These findings highlight the complex role of risk perceptions and gender differences in understanding people’s decisions to join a BM registry.
Resumo:
This paper aims to review biomaterials used in manufacturing bone plates including advances in recent years and prospect in the future. It has found among all biomaterials, currently titanium and stainless steel alloys are the most common in production of bone plates. Other biomaterials such as Mg alloys, Ta alloys, SMAs, carbon fiber composites and bioceramics are potentially suitable for bone plates because of their advantages in biocompatibility, bioactivity and biodegradability. However, today either they are not used in bone plates or have limited applications in only some flexible small-size implants. This problem is mainly related to their poor mechanical properties. Additionally, production processes play an effective role. Therefore, in the future, further studies should be conducted to solve these problems and make them feasible for heavy-duty bone plates.
Evaluation cortical bone elasticity in response to pulse power excitation using ultrasonic technique
Resumo:
This paper presents the ultrasonic velocity measurement method which investigates the possible effects of high voltage high frequency pulsed power on cortical bone material elasticity. Before applying a pulsed power signal on a live bone, it is essential to determine the safe parameters of pulsed power applied on bone non-destructively. Therefore, the possible changes in cortical bone material elasticity due to a specified pulsed power excitation have been investigated. A controllable positive buck-boost converter with adjustable output voltage and frequency has been used to generate high voltage pulses (500V magnitude at 10 KHz frequency). To determine bone elasticity, an ultrasonic velocity measurement has been conducted on two groups of control (unexposed to pulse power but in the same environmental condition) and cortical bone samples exposed to pulsed power. Young’s modulus of cortical bone samples have been determined and compared before and after applying the pulsed power signal. After applying the high voltage pulses, no significant variation in elastic property of cortical bone specimens was found compared to the control. The result shows that pulsed power with nominated parameters can be applied on cortical bone tissue without any considerable negative effect on elasticity of bone material.
Resumo:
Currently, well established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, their application, however, is associated with disadvantages. These include limited access and availability, donor site morbidity and haemorrhage, increased risk of infection, and insufficient transplant integration. As a result, recent research focuses on the development of complementary therapeutic concepts. The field of tissue engineering has emerged as an important alternative approach to bone regeneration. Tissue engineering unites aspects of cellular biology, biomechanical engineering, biomaterial sciences and trauma and orthopaedic surgery. To obtain approval by regulatory bodies for these novel therapeutic concepts the level of therapeutic benefit must be demonstrated rigorously in well characterized, clinically relevant animal models. Therefore, in this PhD project, a reproducible and clinically relevant, ovine, critically sized, high load bearing, tibial defect model was established and characterized as a prerequisite to assess the regenerative potential of a novel treatment concept in vivo involving a medical grade polycaprolactone and tricalciumphosphate based composite scaffold and recombinant human bone morphogenetic proteins.
Resumo:
Haematopoiesis is the process by which a hierarchy of mature and progenitor blood cells are formed. These cell populations are all derived from multipotent haematopoietic stem cells (HSC), which reside in the bone marrow ‘niche’ of adult humans. Over the lifetime of a healthy individual, this HSC population replenishes between 1010-1011 blood cells on a daily basis. Dysregulation of this system can lead to a number of haematopoietic diseases, including aplastic anaemias and leukaemias, which result in, or require for disease resolution, bone marrow cell depletion. In 1956, E. Donnall Thomas demonstrated that haematopoiesis could be restored by transplanting bone marrow-derived cells from one man into his identical twin brother, who was suffering from advanced leukaemia. His success drew significant interest in academic research and medicine communities, and 12 years later, the first successful allogeneic transplant was performed. To this day, HSCs remain the most studied and characterised stem cell population. In fact, HSCs are the only stem cell population routinely utilised in the clinic. As such, HSCs function as a model system both for the biological investigation of stem cells, as well as for their clinical application. Herein, we briefly review HSC transplantation, strategies for the ex vivo cultivation of HSCs, recent clinical outcomes, and their impact on the future direction of HSC transplantation therapy.
Resumo:
Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.
Resumo:
Twin studies offer the opportunity to determine the relative contribution of genes versus environment in traits of interest. Here, we investigate the extent to which variance in brain structure is reduced in monozygous twins with identical genetic make-up. We investigate whether using twins as compared to a control population reduces variability in a number of common magnetic resonance (MR) structural measures, and we investigate the location of areas under major genetic influences. This is fundamental to understanding the benefit of using twins in studies where structure is the phenotype of interest. Twenty-three pairs of healthy MZ twins were compared to matched control pairs. Volume, T2 and diffusion MR imaging were performed as well as spectroscopy (MRS). Images were compared using (i) global measures of standard deviation and effect size, (ii) voxel-based analysis of similarity and (iii) intra-pair correlation. Global measures indicated a consistent increase in structural similarity in twins. The voxel-based and correlation analyses indicated a widespread pattern of increased similarity in twin pairs, particularly in frontal and temporal regions. The areas of increased similarity were most widespread for the diffusion trace and least widespread for T2. MRS showed consistent reduction in metabolite variation that was significant in the temporal lobe N-acetylaspartate (NAA). This study has shown the distribution and magnitude of reduced variability in brain volume, diffusion, T2 and metabolites in twins. The data suggest that evaluation of twins discordant for disease is indeed a valid way to attribute genetic or environmental influences to observed abnormalities in patients since evidence is provided for the underlying assumption of decreased variability in twins.
Resumo:
Objective: To comprehensively measure the burden of hepatitis B, liver cirrhosis and liver cancer in Shandong province, using disability-adjusted life years (DALYs) to estimate the disease burden attribute to hepatitis B virus (HBV)infection. Methods: Based on the mortality data of hepatitis B, liver cirrhosis and liver cancer derived from the third National Sampling Retrospective Survey for Causes of Death during 2004 and 2005, the incidence data of hepatitis B and the prevalence and the disability weights of liver cancer gained from the Shandong Cancer Prevalence Sampling Survey in 2007, we calculated the years of life lost (YLLs), years lived with disability (YLDs) and DALYs of three diseases following the procedures developed for the global burden of disease (GBD) study to ensure the comparability. Results: The total burden for hepatitis B, liver cirrhosis and liver cancer were 211 616 (39 377 YLLs and 172 239 YLDs), 16 783 (13 497 YLLs and 3286 YLDs) and 247 795 (240 236 YLLs and 7559 YLDs) DALYs in 2005 respectively, and men were 2.19, 2.36 and 3.16 times as that for women, respectively in Shandong province. The burden for hepatitis B was mainly because of disability (81.39%). However, most burden on liver cirrhosis and liver cancer were due to premature death (80.42% and 96.95%). The burden of each patient related to hepatitis B, liver cirrhosis and liver cancer were 4.8, 13.73 and 11.11 respectively. Conclusion: Hepatitis B, liver cirrhosis and liver cancer caused considerable burden to the people living in Shandong province, indicating that the control of hepatitis B virus infection would bring huge potential benefits.
Resumo:
Objective: To determine the major health related risk factors and provide evidence for policy-making,using health burden analysis on selected factors among general population from Shandong province. Methods: Based on data derived from the Third Death of Cause Sampling Survey in Shandong. Years of life lcrat(YLLs),yearS Iived with disability(YLDs)and disability-adjusted life years(DALYs) were calculated according to the GBD ethodology.Deaths and DALYs attributed to the selected risk factors were than estimated together with the PAF data from GBD 2001 study.The indirect method was employed to estimate the YLDs. Results: 51.09%of the total dearlls and 31.83%of the total DALYs from the Shandong population were resulted from the 19 selected risk factors.High blood pre.ure,smoking,low fruit and vegetable intake,aleohol consumption,indoor smoke from solid fuels,high cholesterol,urban air pollution, physical inactivity,overweight and obesity and unsafe injections in health care settings were identified as the top 10 risk faetors for mortality which together caused 50.21%of the total deaths.Alcohol use,smoking,high blood pressure,Low fruit and vegetable intake, indoor smoke from solid fuels, overweight and obesity,high cholesterol, physical inactivity,urban air pollution and iron-deficiency anemia were proved as the top 10 risk factors related to disease burden and were responsible for 29.04%of the total DALYs. Conclusion: Alcohol use.smoking and high blood pressure were determined as the major risk factors which influencing the health of residents in Shandong. The mortality and burden of disease could be reduced significantly if these major factors were effectively under control.
Resumo:
Prostate cancer is a significant health problem faced by aging men. Currently, diagnostic strategies for the detection of prostate cancer are either unreliable, yielding high numbers of false positive results, or too invasive to be used widely as screening tests. Furthermore, the current therapeutic strategies for the treatment of the disease carry considerable side effects. Although organ confined prostate cancer can be curable, most detectable clinical symptoms occur in advanced disease when primary tumour cells have metastasised to distant sites - usually lymph nodes and bone. Many growth factors and steroids assist the continued growth and maintenance of prostatic tumour cells. Of these mitogens, androgens are important in the development of the normal prostate but are also required to sustain the growth of prostate cancer cells in the early stage of the disease. Not only are androgens required in the early stage of disease, but also many other growth factors and hormones interact to cause uncontrolled proliferation of malignant cells. The early, androgen sensitive phase of disease is followed by an androgen insensitive phase, whereby androgens are no longer required to stimulate the growth of the tumour cells. Growth factors such as transforming growth factor and (TGF/), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), insulin-like growth factors (IGFs), Vitamin D and thyroid hormone have been suggested to be important at this stage of disease. Interestingly, some of the kallikrein family of genes, including prostate specific antigen (PSA), the current serum diagnostic marker for prostate cancer, are regulated by androgens and many of the aforementioned growth factors. The kallikrein gene family is a group of serine proteases that are involved in a diverse range of physiological processes: regulation of local blood flow, angiogenesis, tissue invasion and mitogenesis. The earliest members of the kallikrein gene family (KLK1-KLK3) have been strongly associated with general disease states, such as hypertension, inflammation, pancreatitis and renal disease, but are also linked to various cancers. Recently, this family was extended to include 15 genes (KLK1-15). Several newer members of the kallikrein family have been implicated in the carcinogenesis and tumour metastasis of hormone-dependent cancers such as prostate, breast, endometrial and ovarian cancer. The aims of this project were to investigate the expression of the newly identified kallikrein, KLK4, in benign and malignant prostate tissues, and prostate cancer cell lines. This thesis has demonstrated the elevated expression of KLK4 mRNA transcripts in malignant prostate tissue compared to benign prostates. Additionally, expression of the full length KLK4 transcript was detected in the androgen dependent prostate cancer cell line, LNCaP. Based on the above finding, the LNCaP cell line was chosen to assess the potential regulation of full length KLK4 by androgen, thyroid hormone and epidermal growth factor. KLK4 mRNA and protein was found to be up-regulated by androgen and a combination of androgen and thyroid hormone. Thyroid hormone alone produced no significant change in KLK4 mRNA or protein over the control. Epidermal growth factor treatment also resulted in elevated expression levels of KLK4 mRNA and protein. To assess the potential functional role(s) of KLK4/hK4 in processes associated with tumour progression, full length KLK4 was transfected into PC-3 cells - a prostate cancer cell line originally derived from a secondary bone lesion. The KLK4/hK4 over-expressing cells were assessed for their proliferation, migration, invasion and attachment properties. The KLK4 over-expressing clones exhibited a marked change in morphology, indicative of a more aggressive phenotype. The KLK4 clones were irregularly shaped with compromised adhesion to the growth surface. In contrast, the control cell lines (parent PC-3 and empty vector clones) retained a rounded morphology with obvious cell to cell adhesion, as well as significant adhesion to their growth surface. The KLK4 clones exhibited significantly greater attachment to Collagen I and IV than native PC-3s and empty vector controls. Over a 12 hour period, in comparison to the control cells, the KLK4 clones displayed an increase in migration towards PC-3 native conditioned media, a 3 fold increase towards conditioned media from an osteoblastic cell line (Saos-2) and no change in migration towards conditioned media from neonatal foreskin fibroblast cells or 20% foetal bovine serum. Furthermore, the increase in migration exhibited by the KLK4 clones was partially blocked by the serine protease inhibitor, aprotinin. The data presented in this thesis suggests that KLK4/hK4 is important in prostate carcinogenesis due to its over-expression in malignant prostate tissues, its regulation by hormones and growth factors associated with prostate disease and the functional consequences of over-expression of KLK4/hK4 in the PC-3 cell line. These results indicate that KLK4/hK4 may play an important role in tumour invasion and bone metastasis via increased attachment to the bone matrix protein, Collagen I, and enhanced migration due to soluble factors produced by osteoblast cells. This suggestion is further supported by the morphological changes displayed by the KLK4 over-expressing cells. Overall, this data suggests that KLK4/hK4 should be further studied to more fully investigate the potential value of KLK4/hK4 as a diagnostic/prognostic biomarker or in therapeutic applications.