479 resultados para VARIANCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, the beauty leaf plant (Calophyllum Inophyllum) is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA) content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beauty leaf oil to produce biodiesel has been investigated. A two-step biodiesel conversion method consisting of acid catalysed pre-esterification and alkali catalysed transesterification has been utilized. The three main factors that drive the biodiesel (fatty acid methyl ester (FAME)) conversion from vegetable oil (triglycerides) were studied using response surface methodology (RSM) based on a Box-Behnken experimental design. The factors considered in this study were catalyst concentration, methanol to oil molar ratio and reaction temperature. Linear and full quadratic regression models were developed to predict FFA and FAME concentration and to optimize the reaction conditions. The significance of these factors and their interaction in both stages was determined using analysis of variance (ANOVA). The reaction conditions for the largest reduction in FFA concentration for acid catalysed pre-esterification was 30:1 methanol to oil molar ratio, 10% (w/w) sulfuric acid catalyst loading and 75 °C reaction temperature. In the alkali catalysed transesterification process 7.5:1 methanol to oil molar ratio, 1% (w/w) sodium methoxide catalyst loading and 55 °C reaction temperature were found to result in the highest FAME conversion. The good agreement between model outputs and experimental results demonstrated that this methodology may be useful for industrial process optimization for biodiesel production from beauty leaf oil and possibly other industrial processes as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The socially responsible investment (SRI) funds performances remain inconclusive. Hence, more studies need to be conducted to determine if SRI funds systematically underperform or outperform conventional funds. This paper has employed dynamic mean-variance model using shortage function approach to evaluate the performance of SRI and Environmentally friendly funds (EF). Unlike the traditional methods, this approach estimates fund performance considering both the return and risk at the same time. The empirical results show that SRI funds outperformed conventional funds in EU and US. In addition, the results of EU are among the top-performing categories. EF do not perform as well as SRI, but perform in manners equal or superior to conventional funds. These results show statistically significant in some cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, k -nearest neighbor ( k -NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70 %, sensitivity of 91.11 %, and specificity of 96.30 % using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sparse optical flow algorithms, such as the Lucas-Kanade approach, provide more robustness to noise than dense optical flow algorithms and are the preferred approach in many scenarios. Sparse optical flow algorithms estimate the displacement for a selected number of pixels in the image. These pixels can be chosen randomly. However, pixels in regions with more variance between the neighbours will produce more reliable displacement estimates. The selected pixel locations should therefore be chosen wisely. In this study, the suitability of Harris corners, Shi-Tomasi's “Good features to track", SIFT and SURF interest point extractors, Canny edges, and random pixel selection for the purpose of frame-by-frame tracking using a pyramidical Lucas-Kanade algorithm is investigated. The evaluation considers the important factors of processing time, feature count, and feature trackability in indoor and outdoor scenarios using ground vehicles and unmanned aerial vehicles, and for the purpose of visual odometry estimation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

School connectedness is central to the long term well-being of adolescents, and high quality parent-child relationships facilitate school connectedness. This study examined the extent to which family relationship quality is associated with the school connectedness of pre- and early teenagers, and how this association varies with adolescent involvement in peer drinking networks. The sample consisted of 7,372 10-14 year olds recruited from 231 schools in 30 Australian communities. Participants completed the Communities that Care youth survey. A multi-level model of school connectedness was used, with a random term for school-level variation. Key independent variables included family relationship quality, peer drinking networks, and school grade. Control variables included child gender, sensation seeking, depression, child alcohol use, parent education, and language spoken at home. For grade 6 students, the association of family relationship quality and school connectedness was lower when peer drinking networks were present, and this effect was nonsignificant for older (grade 8) students. Post hoc analyses indicated that the effect for family relationship quality on school connectedness was nonsignificant when adolescents in grade 6 reported that the majority of friends consumed alcohol. The results point to the importance of familyschool partnerships in early intervention and prevention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of children cease napping between 3 and 5 years of age yet, internationally, the allocation of a sleep time during the day for children of this age remains a practice in many early childhood education (ECE) settings. These dual circumstances present a disjuncture between children's sleep needs and center practices, that may cause conflict for staff, increase stress for children and escalate negative emotional climate in the room. Testing this hypothesis requires observation of both the emotional climate and behavioral management used in ECE rooms that extends into the sleep time. This study was the first to apply the Classroom Assessment and Scoring System (CLASS) Pre-K (Pianta, La Paro, & Hamre, 2008) to observe the emotional climate and behavioral management during sleep time. Pilot results indicated that the CLASS Pre-K functioned reliably to measure emotional climate and behavioral management in sleep time. However, new sleep-specific examples of the dimensions used were developed, to help orient fieldworkers to the CLASS Pre-K rating system in the sleep time context. The CLASS was then used to assess emotional climate and behavior management between the non-sleep and sleep time sessions, in 113 ECE rooms in Queensland, Australia. In these rooms 2.114 children were observed. Of these children, 71% did not sleep at any point during the allotted sleep times. There was a significant drop in emotional climate and behavioral management between the non-sleep and sleep-time sessions. Furthermore, the duration of mandated sleep time (a period of time where no activities are provided to non-sleeping children) accounted for significant independent variance in the observed emotional climate during sleep-time. The CLASS Pre-K presents a valuable tool to assess the emotional climate and behavior management during sleep-time and draws attention to the need for further studies of sleep time in ECE settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After attending this presentation, attendees will gain awareness of the ontogeny of cranial maturation, specifically: (1) the fusion timings of primary ossification centers in the basicranium; and (2) the temporal pattern of closure of the anterior fontanelle, to develop new population-specific age standards for medicolegal death investigation of Australian subadults. This presentation will impact the forensic science community by demonstrating the potential of a contemporary forensic subadult Computed Tomography (CT) database of cranial scans and population data, to recalibrate existing standards for age estimation and quantify growth and development of Australian children. This research welcomes a study design applicable to all countries faced with paucity in skeletal repositories. Accurate assessment of age-at-death of skeletal remains represents a key element in forensic anthropology methodology. In Australian casework, age standards derived from American reference samples are applied in light of scarcity in documented Australian skeletal collections. Currently practitioners rely on antiquated standards, such as the Scheuer and Black1 compilation for age estimation, despite implications of secular trends and population variation. Skeletal maturation standards are population specific and should not be extrapolated from one population to another, while secular changes in skeletal dimensions and accelerated maturation underscore the importance of establishing modern standards to estimate age in modern subadults. Despite CT imaging becoming the gold standard for skeletal analysis in Australia, practitioners caution the application of forensic age standards derived from macroscopic inspection to a CT medium, suggesting a need for revised methodologies. Multi-slice CT scans of subadult crania and cervical vertebrae 1 and 2 were acquired from 350 Australian individuals (males: n=193, females: n=157) aged birth to 12 years. The CT database, projected at 920 individuals upon completion (January 2014), comprises thin-slice DICOM data (resolution: 0.5/0.3mm) of patients scanned since 2010 at major Brisbane Childrens Hospitals. DICOM datasets were subject to manual segmentation, followed by the construction of multi-planar and volume rendering cranial models, for subsequent scoring. The union of primary ossification centers of the occipital bone were scored as open, partially closed or completely closed; while the fontanelles, and vertebrae were scored in accordance with two stages. Transition analysis was applied to elucidate age at transition between union states for each center, and robust age parameters established using Bayesian statistics. In comparison to reported literature, closure of the fontanelles and contiguous sutures in Australian infants occur earlier than reported, with the anterior fontanelle transitioning from open to closed at 16.7±1.1 months. The metopic suture is closed prior to 10 weeks post-partum and completely obliterated by 6 months of age, independent of sex. Utilizing reverse engineering capabilities, an alternate method for infant age estimation based on quantification of fontanelle area and non-linear regression with variance component modeling will be presented. Closure models indicate that the greatest rate of change in anterior fontanelle area occurs prior to 5 months of age. This study complements the work of Scheuer and Black1, providing more specific age intervals for union and temporal maturity of each primary ossification center of the occipital bone. For example, dominant fusion of the sutura intra-occipitalis posterior occurs before 9 months of age, followed by persistence of a hyaline cartilage tongue posterior to the foramen magnum until 2.5 years; with obliteration at 2.9±0.1 years. Recalibrated age parameters for the atlas and axis are presented, with the anterior arch of the atlas appearing at 2.9 months in females and 6.3 months in males; while dentoneural, dentocentral and neurocentral junctions of the axis transitioned from non-union to union at 2.1±0.1 years in females and 3.7±0.1 years in males. These results are an exemplar of significant sexual dimorphism in maturation (p<0.05), with girls exhibiting union earlier than boys, justifying the need for segregated sex standards for age estimation. Studies such as this are imperative for providing updated standards for Australian forensic and pediatric practice and provide an insight into skeletal development of this population. During this presentation, the utility of novel regression models for age estimation of infants will be discussed, with emphasis on three-dimensional modeling capabilities of complex structures such as fontanelles, for the development of new age estimation methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is a reply to "Comment on 'Online Estimation of Allan Variance Parameters' " by James C.Wilcox published in JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS Vol. 24, No. 3, May–June 2001. OUR statement “Modern gyros provide angular rate measurements directly, and hence, angular quantization is meaningless” made in the original paper should first be read with the accompanying sentences in the paragraph. The meaning of the sentence would perhaps have been clearer if written". . .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper develops maximum likelihood (ML) estimation schemes for finite-state semi-Markov chains in white Gaussian noise. We assume that the semi-Markov chain is characterised by transition probabilities of known parametric from with unknown parameters. We reformulate this hidden semi-Markov model (HSM) problem in the scalar case as a two-vector homogeneous hidden Markov model (HMM) problem in which the state consist of the signal augmented by the time to last transition. With this reformulation we apply the expectation Maximumisation (EM ) algorithm to obtain ML estimates of the transition probabilities parameters, Markov state levels and noise variance. To demonstrate our proposed schemes, motivated by neuro-biological applications, we use a damped sinusoidal parameterised function for the transition probabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Research that has focused on the ability of self-report assessment tools to predict crash outcomes has proven to be mixed. As a result, researchers are now beginning to explore whether examining culpability of crash involvement can subsequently improve this predictive efficacy. This study reports on the application of the Manchester Driver Behaviour Questionnaire (DBQ) to predict crash involvement among a sample of general Queensland motorists, and in particular, whether including a crash culpability variable improves predictive outcomes. Surveys were completed by 249 general motorists on-line or via a pen-and-paper format. Results: Consistent with previous research, a factor analysis revealed a three factor solution for the DBQ accounting for 40.5% of the overall variance. However, multivariate analysis using the DBQ revealed little predictive ability of the tool to predict crash involvement. Rather, exposure to the road was found to be predictive of crashes. An analysis into culpability revealed 88 participants reported being “at fault” for their most recent crash. Corresponding between and multi-variate analyses that included the culpability variable did not result in an improvement in identifying those involved in crashes. Conclusions: While preliminary, the results suggest that including crash culpability may not necessarily improve predictive outcomes in self-report methodologies, although it is noted the current small sample size may also have had a deleterious effect on this endeavour. This paper also outlines the need for future research (which also includes official crash and offence outcomes) to better understand the actual contribution of self-report assessment tools, and culpability variables, to understanding and improving road safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vision-based place recognition involves recognising familiar places despite changes in environmental conditions or camera viewpoint (pose). Existing training-free methods exhibit excellent invariance to either of these challenges, but not both simultaneously. In this paper, we present a technique for condition-invariant place recognition across large lateral platform pose variance for vehicles or robots travelling along routes. Our approach combines sideways facing cameras with a new multi-scale image comparison technique that generates synthetic views for input into the condition-invariant Sequence Matching Across Route Traversals (SMART) algorithm. We evaluate the system’s performance on multi-lane roads in two different environments across day-night cycles. In the extreme case of day-night place recognition across the entire width of a four-lane-plus-median-strip highway, we demonstrate performance of up to 44% recall at 100% precision, where current state-of-the-art fails.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active learning approaches reduce the annotation cost required by traditional supervised approaches to reach the same effectiveness by actively selecting informative instances during the learning phase. However, effectiveness and robustness of the learnt models are influenced by a number of factors. In this paper we investigate the factors that affect the effectiveness, more specifically in terms of stability and robustness, of active learning models built using conditional random fields (CRFs) for information extraction applications. Stability, defined as a small variation of performance when small variation of the training data or a small variation of the parameters occur, is a major issue for machine learning models, but even more so in the active learning framework which aims to minimise the amount of training data required. The factors we investigate are a) the choice of incremental vs. standard active learning, b) the feature set used as a representation of the text (i.e., morphological features, syntactic features, or semantic features) and c) Gaussian prior variance as one of the important CRFs parameters. Our empirical findings show that incremental learning and the Gaussian prior variance lead to more stable and robust models across iterations. Our study also demonstrates that orthographical, morphological and contextual features as a group of basic features play an important role in learning effective models across all iterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purposes: The first objective was to propose a new model representing the balance level of adults with intellectual and developmental disabilities (IDD) using Principal Components Analysis (PCA); and the second objective was to use the results from the PCA recorded by regression method to construct and validate summative scales of the standardized values of the index, which may be useful to facilitate a balance assessment in adults with IDD. Methods: A total of 801 individuals with IDD (509 males) mean 33.1±8.5 years old, were recruited from Special Olympic Games in Spain 2009 to 2012. The participants performed the following tests: the timed-stand test, the single leg stance test with open and closed eyes, the Functional Reach Test, the Expanded Timed-Get-up-and-Go Test. Data was analyzed using principal components analysis (PCA) with Oblimin rotation and Kaiser normalization. We examined the construct validity of our proposed two-factor model underlying balance for adults with IDD. The scores from PCA were recorded by regression method and were standardized. Results: The Component Plot and Rotated Space indicated that a two-factor solution (Dynamic and Static Balance components) was optimal. The PCA with direct Oblimin rotation revealed a satisfactory percentage of total variance explained by the two factors: 51.6 and 21.4%, respectively. The median score standardized for component dynamic and static of the balance index for adults with IDD is shown how references values. Conclusions: Our study may lead to improvements in the understanding and assessment of balance in adults with IDD. First, it confirms that a two-factor model may underlie the balance construct, and second, it provides an index that may be useful for identifying the balance level for adults with IDD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meta-analysis is a method to obtain a weighted average of results from various studies. In addition to pooling effect sizes, meta-analysis can also be used to estimate disease frequencies, such as incidence and prevalence. In this article we present methods for the meta-analysis of prevalence. We discuss the logit and double arcsine transformations to stabilise the variance. We note the special situation of multiple category prevalence, and propose solutions to the problems that arise. We describe the implementation of these methods in the MetaXL software, and present a simulation study and the example of multiple sclerosis from the Global Burden of Disease 2010 project. We conclude that the double arcsine transformation is preferred over the logit, and that the MetaXL implementation of multiple category prevalence is an improvement in the methodology of the meta-analysis of prevalence.