419 resultados para Sugarcane -- Genetic engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the fabrication of osteochondral tissue engineering scaffolds, the two distinct tissues impose different requirements on the architecture. Stereo-lithography is a rapid prototyping method that can be utilised to make 3D constructs with high spatial control by radical photopolymerization. In this study, biodegradable resins are developed that can be applied in stereo-lithography. Photo-crosslinked poly(lactide) networks with varying physical properties were synthesised, and by photo polymerizing in the presence of leachable particles porous scaffolds could be prepared as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the fabrication of tissue engineering scaffolds, the intended tissue formation process imposes requirements on the architecture. The chosen porosity often is a tradeoff between volume and surface area accessible to cells, and mechanical properties of the construct. Interconnectivity of the pores is essential for cell migration through the scaffold and for mass transport. Conventional techniques such as salt leaching often result in heterogeneous structures and do not allow for a precise control of the architecture. Stereolithography is a rapid prototyping method that can be utilised to make 3D constructs with high spatial control by radical photopolymerisation. In this study, a regular structure based on cyclic repetition of cell units were designed through CAD modelling.. One of these structures was built on a stereolithography apparatus (SLA). Furthermore, a polylactide-based resin was developed that can be applied in stereolithography. Polylactide has proven before to be a well-performing polymer in bone tissue engineering. The final objective in this study is to build newly designed PDLLA scaffolds with a precise SLA fabrication technique to study the effect of scaffold architecture on mechanical and biological properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of porous structures as tissue engineering scaffolds imposes high demands on the pore architecture. Stereolithography is a rapid prototyping method based on photo-polymerisation, that can be utilised to make 3D constructs with high spatial control. In this study, biodegradable resins were developed that can find application in stereolithography. Poly(D,L-lactide) (PDLLA) oligomers were synthesised and functionalised with methacrylate end-groups. By mixing the resulting macromers with a diluent, photo-initiator and inhibitor, lowviscosity resins were obtained that were photocrosslinked to yield stiff and strong degradable poly(lactide) networks. Also, porous scaffolds were fabricated on a stereolithography apparatus (SLA) from a nondegradable resin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For quite some time, debate has raged about what the human race can and should do with its knowledge of genetics. We are now nearly 60 years removed from the work of Watson and Crick who determined the structure of deoxyribonucleic acid (DNA), yet our opinions as how best to employ scientific knowledge of the human genome, remain as diverse and polarised as ever. Human judgment is often shaped and coloured by popular media and culture, so it should come as no surprise that box office movies such as Gattaca (1997) continue to play a role in informing public opinion on genetics. In order to perform well at the box office, movies such as Gattaca take great liberty in sensationalising (and even distorting) the implications that may result from genetic screening and testing. If the public’s opinion on human genetics is strongly derived from the box office and popular media, then it is no wonder that the discourse on human genetics is couched in the polar parlances of future utopias or future dystopias. When legislating in an area like genetic discrimination in the workforce, we must be mindful of not overplaying the causal link between genetic predisposition towards a disability and an employee’s ability to perform the inherent requirements of their job. Genetic information is ultimately about people, it is not about genes. Genetic discrimination is ultimately about actions, it is not about the intrinsic value of genetic information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method was developed for a quantitative assessment of pore interconnectivity using micro-CT data. This method makes use of simulated spherical particles, percolating through the interconnected pore network. For each sphere diameter, the accessible pore volume is calculated. This algorithm was applied to compare pore interconnectivity of two different scaffold architectures; one created by salt-leaching and the other by stereolithography. The algorithm revealed a much higher pore interconnectivity for the latter one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In tissue engineering, porous scaffolds are used as a temporal support for tissue regeneration through cell adhesion, proliferation and differentiation. Besides applying a suitable material that is both biocompatible and biodegradable, the architectural design of the porous scaffold can be of essential for successful tissue regeneration. The architecture is of great influence on mechanical properties and transport properties of nutrients and metabolites1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyapatite (HAP) is a major component of bone and has osteoconductive and -inductive properties. It has been successfully applied as a substrate in bone tissue engineering, either with or without a biodegradable polymer such as polycaprolactone or polylactide. Recently, we have developed a stereolithography resin based on poly(D,L-lactide) (PDLLA) and a non-reactive diluent, that allows for the preparation of tissue engineering scaffolds with designed architectures. In this work, designed porous composite structures of PDLLA and HAP are prepared by stereolithography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bananas are hosts to a large number of banana streak virus (BSV) species. However, diagnostic methods for BSV are inadequate because of the considerable genetic and serological diversity amongst BSV isolates and the presence of integrated BSV sequences in some banana cultivars which leads to false positives. In this study, a sequence non-specific, rolling-circle amplification (RCA) technique was developed and shown to overcome these limitations for the detection and subsequent characterisation of BSV isolates infecting banana. This technique was shown to discriminate between integrated and episomal BSV DNA, specifically detecting the latter in several banana cultivars known to contain episomal and/or integrated sequences of Banana streak Mysore virus (BSMyV), Banana streak OL virus (BSOLV) and Banana streak GF virus (BSGFV). Using RCA, the presence of BSMyV and BSOLV was confirmed in Australia, while BSOLV, BSGFV, Banana streak Uganda I virus (BSUgIV), Banana streak Uganda L virus (BSUgLV) and Banana streak Uganda M virus (BSUgMV) were detected in Uganda. This is the first confirmed report of episomally-derived BSUglV, BSUgLV and BSUgMV in Uganda. As well as its ability to detect BSV, RCA was shown to detect two other pararetroviruses, Sugarcane bacilliform virus in sugarcane and Cauliflower mosaic virus in turnip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Bone loss associated with trauma, osteo-degenerative diseases and tumors has tremendous socioeconomic impact related to personal and occupation disability and health care costs. In the present climate of increasing life expectancy with an ensuing increase in bone-related injuries, orthopaedic surgery is undergoing a paradigm shift from bone-grafting to bone engineering, where a scaffold is implanted to provide adequate load bearing and enhance tissue regeneration. We aim to develop composite scaffolds for bone tissue engineering applications to replace the current gold standard of autografting. ---------- Methods: Medical grade polycaprolactone-tricalcium phosphate (mPCL/TCP) scaffolds (80/20 wt%) were custom made using fused deposition modelling to produce 1x1.5x2 cm sized implants for critical-sized pig cranial implantations, empty defects were used as a control. Autologous bone marrow stromal cells (BMSCs) were extracted and precultured for 2 weeks, dispersed within fibrin glue and injected during scaffold implantation. After 2 years, microcomputed tomography and histology were used to assess bone regenerative capabilities of cell versus cell-free scaffolds. ---------- Results: Extensive bone regeneration was evident throughout the entire scaffold. Clear osteocytes embedded within mineralised matrix and active osteoblasts present around scaffold struts were observed. Cell groups performed better than cell-free scaffolds. ---------- Conclusions: Bone regeneration within defects which cannot heal unassisted can be achieved using mPCL/TCP scaffolds. This is improved by the inclusion of autogenous BMSCs. Further work will include the inclusion of growth factors including BMP-2, VEGF and PDGF to provide multifunctional scaffolds, where the three-dimensional (3D) template itself acts as a biomimetic, programmable and multi-drug delivery device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone loss associated with trauma osteo-degenerative diseases and tumors has tremendous socioeconomic impact related to personal and occupation disability and health care costs. Bone grafting is often critical to surgical therapies. Autogenous bone is presently the preferred grafting material; however, this holds several disadvantages such as donor site morbidity. In the present climate of increasing life expectancy with an ensuing increase in bone-related injuries, orthopaedic surgery is undergoing a paradigm shift from bone-grafting to bone engineering, where a scaffold is implanted to provide adequate load bearing and enhance tissue regeneration. Our group at Queensland University of Technology (QUT) have developed, characterised and tested polycaprolactone/ tricalcium phosphate (PCL/TCP) composite scaffolds for low load-bearing bone defects. These scaffolds are being further developed for application in higher load bearing sites. Our approach emphasizes the importance of the biomaterials’ structural design, the scaffold architecture and structural and nutritional requirements for cell culture. These first-generation scaffolds made from medical grade PCL (mPCL) have been studied for more than 5 years within a clinical setting 1. This paper describes the application of second-generation scaffolds in small and large animal bone defect models and the ensuing bone regeneration as shown by histology and µCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mud crab (Scylla spp.) aquaculture industry has expanded rapidly in recent years in many countries in the Indo - West Pacific (IWP) region as an alternative to marine shrimp culture because of significant disease outbreaks and associated failures of many shrimp culture industries in the region. Currently, practices used to produce and manage breeding crabs in hatcheries may compromise levels of genetic diversity, ultimately compromising growth rates, disease resistance and stock productivity. Therefore, to avoid “genetic pollution” and its harmful effects and to promote further development of mud crab aquaculture and fisheries in a sustainable way, a greater understanding of the genetic attributes of wild and cultured mud crab stocks is required. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations for multiple purposes including for commercial production, recreation and conservation and to increase profitability and sustainability of newly emerging crab culture industries. Phylogeographic patterns and the genetic structure of Asian mud crab populations across the IWP were assessed to determine if they were concordant with those of other widespread taxa possessing pelagic larvae of relatively long duration. A 597 bp fragment of the mitochondrial DNA COI gene was amplified and screened for variation in a total of 297 individuals of S. paramamosain from six sampling sites across the species’ natural geographical distribution in the IWP and 36 unique haplotypes were identified. Haplotype diversities per site ranged from 0.516 to 0.879. Nucleotide diversity estimates among haplotypes were 0.11% – 0.48%. Maximum divergence observed among S. paramamosain samples was 1.533% and samples formed essentially a single monophyletic group as no obvious clades were related to geographical location of sites. A weak positive relationship was observed however, between genetic distance and geographical distance among sites. Microsatellite markers were then used to assess contemporary gene flow and population structure in Asian mud crab populations sampled across their natural distribution in the IWP. Eight microsatellite loci were screened in sampled S. paramamosain populations and all showed high allelic diversity at all loci in sampled populations. In total, 344 individuals were analysed, and 304 microsatellite alleles were found across the 8 loci. The mean number of alleles per locus at each site ranged from 20.75 to 28.25. Mean allelic richness per site varied from 17.2 to 18.9. All sites showed high levels of heterozygosity as average expected heterozygosities for all loci ranged from 0.917 – 0.953 while mean observed heterozygosity ranged from 0.916 – 0.959. Allele diversities were similar at all sites and across all loci. The results did not show any evidence for major differences in allele frequencies among sites and patterns of allele frequencies were very similar in all populations across all loci. Estimates of population differentiation (FST) were relatively low and most probably largely reflect intra – individual variation for very highly variable loci. Results from nDNA analysis showed evidence for only very limited population genetic structure among sampled S. paramamosain, and a positive and significant association for genetic and geographical distance among sample sites. Microsatellite markers were then employed to determine if adequate levels of genetic diversity has been captured in crab hatcheries for the breeding cycle. The results showed that all microsatellite loci were polymorphic in hatchery samples. Culture populations were in general, highly genetically depauperate, compared with comparable wild populations, with only 3 to 8 alleles recorded for the same loci set per population. In contrast, very high numbers of alleles per locus were found in reference wild S. paramamosain populations, which ranged from 18 to 46 alleles per locus per population. In general, this translates into a 3 to 10 fold decline in mean allelic richness per locus in all culture stocks compared with wild reference counterparts. Furthermore, most loci in all cultured S. paramamosain samples showed departures from HWE equilibrium. Allele frequencies were very different in culture samples from that present in comparable wild reference samples and this in particular, was reflected in a large decline in allele diversity per locus. The pattern observed was best explained by significant impacts of breeding practices employed in hatcheries rather than natural differentiation among wild populations used as the source of brood stock. Recognition of current problems and management strategies for the species both for the medium and long-term development of the new culture industry are discussed. The priority research to be undertaken over the medium term for S. paramamosain should be to close the life cycle fully to allow individuals to be bred on demand and their offspring equalised to control broodstock reproductive contributions. Establishing a broodstock register and pedigree mating system will be required before any selection program is implemented. This will ensure that sufficient genetic variation will be available to allow genetic gains to be sustainably achieved in a future stock improvement program. A fundamental starting point to improve hatchery practices will be to encourage farmers and hatchery managers to spawn more females in their hatcheries as it will increase background genetic diversity in culture stocks. Combining crablet cohorts from multiple hatcheries into a single cohort for supply to farmers or rotation of breeding females regularly in hatcheries will help to address immediate genetic diversity problems in culture stocks. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations more efficiently. Over the long-term, application of data on genetic diversity in wild and cultured stocks of Asian mud crab will contribute to development of sustainable and productive culture industries in Vietnam and other countries in the IWP and can contribute towards conservation of wild genetic resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several key issues need to be resolved before an efficient and reproducible Agrobacterium-mediated sugarcane transformation method can be developed for a wider range of sugarcane cultivars. These include loss of morphogenetic potential in sugarcane cells after Agrobacterium-mediated transformation, effect of exposure to abiotic stresses during in vitro selection, and most importantly the hypersensitive cell death response of sugarcane (and other nonhost plants) to Agrobacterium tumefaciens. Eight sugarcane cultivars (Q117, Q151, Q177, Q200, Q208, KQ228, QS94-2329, and QS94-2174) were evaluated for loss of morphogenetic potential in response to the age of the culture, exposure to Agrobacterium strains, and exposure to abiotic stresses during selection. Corresponding changes in the polyamine profiles of these cultures were also assessed. Strategies were then designed to minimize the negative effects of these factors on the cell survival and callus proliferation following Agrobacterium-mediated transformation. Some of these strategies, including the use of cell death protector genes and regulation of intracellular polyamine levels, will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Project focused group work is significant in developing social and personal skills as well as extending the ability to identify, formulate and solve engineering problems. As a result of increasing undergraduate class sizes, along with the requirement for many students to work part-time, group projects, peer and collaborative learning are seen as a fundamental part of engineering education. Group formation, connection to learning objectives and fairness of assessment has been widely reported as major issues that leave students dissatisfied with group project based units. Several strategies were trialled including a study of formation of groups by different methods across two engineering disciplines over the past 2 years. Other strategies involved a more structured approach to assessment practices of civil and electrical engineering disciplines design units. A confidential online teamwork management tool was used to collect and collate student self and peer assessment ratings and used for both formative feedback as well as assessment purposes. Student satisfaction and overall academic results in these subjects have improved since the introduction of these interventions. Both student and staff feedback highlight this approach as enhancing student engagement and satisfaction, improved student understanding of group roles, reducing number of dysfunctional groups whilst requiring less commitment of academic resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an atmosphere where civilization is progressing and becoming more aware of the consequences of careless development decisions, rethinking sustainable development - particularly sustainable urban and infrastructure development - has become an inevitable necessity. ------ ----- Rethinking Sustainable Development: Urban Management, Engineering, and Design considers the role of urban, regional and infrastructure planning in achieving sustainable urban and infrastructure development, providing insights into overcoming the consequences of unsustainable development. This companion volume to Sustainable Urban and Regional Infrastructure: Technology, Planning and Management, overviews all aspects of sustainable urban and infrastructure development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snakehead fishes in the family Channidae are obligate freshwater fishes represented by two extant genera, the African Parachannna and the Asian Channa. These species prefer still or slow flowing water bodies, where they are top predators that exercise high levels of parental care, have the ability to breathe air, can tolerate poor water quality, and interestingly, can aestivate or traverse terrestrial habitat in response to seasonal changes in freshwater habitat availability. These attributes suggest that snakehead fishes may possess high dispersal potential, irrespective of the terrestrial barriers that would otherwise constrain the distribution of most freshwater fishes. A number of biogeographical hypotheses have been developed to account for the modern distributions of snakehead fishes across two continents, including ancient vicariance during Gondwanan break-up, or recent colonisation tracking the formation of suitable climatic conditions. Taxonomic uncertainty also surrounds some members of the Channa genus, as geographical distributions for some taxa across southern and Southeast (SE) Asia are very large, and in one case is highly disjunct. The current study adopted a molecular genetics approach to gain an understanding of the evolution of this group of fishes, and in particular how the phylogeography of two Asian species may have been influenced by contemporary versus historical levels of dispersal and vicariance. First, a molecular phylogeny was constructed based on multiple DNA loci and calibrated with fossil evidence to provide a dated chronology of divergence events among extant species, and also within species with widespread geographical distributions. The data provide strong evidence that trans-continental distribution of the Channidae arose as a result of dispersal out of Asia and into Africa in the mid–Eocene. Among Asian Channa, deep divergence among lineages indicates that the Oligocene-Miocene boundary was a time of significant species radiation, potentially associated with historical changes in climate and drainage geomorphology. Mid-Miocene divergence among lineages suggests that a taxonomic revision is warranted for two taxa. Deep intra-specific divergence (~8Mya) was also detected between C. striata lineages that occur sympatrically in the Mekong River Basin. The study then examined the phylogeography and population structure of two major taxa, Channa striata (the chevron snakehead) and the C. micropeltes (the giant snakehead), across SE Asia. Species specific microsatellite loci were developed and used in addition to a mitochondrial DNA marker (Cyt b) to screen neutral genetic variation within and among wild populations. C. striata individuals were sampled across SE Asia (n=988), with the major focus being the Mekong Basin, which is the largest drainage basin in the region. The distributions of two divergent lineages were identified and admixture analysis showed that where they co-occur they are interbreeding, indicating that after long periods of evolution in isolation, divergence has not resulted in reproductive isolation. One lineage is predominantly confined to upland areas of northern Lao PDR to the north of the Khorat Plateau, while the other, which is more closely related to individuals from southern India, has a widespread distribution across mainland SE Asian and Sumatra. The phylogeographical pattern recovered is associated with past river networks, and high diversity and divergence among all populations sampled reveal that contemporary dispersal is very low for this taxon, even where populations occur in contiguous freshwater habitats. C. micropeltes (n=280) were also sampled from across the Mekong River Basin, focusing on the lower basin where it constitutes an important wild fishery resource. In comparison with C. striata, allelic diversity and genetic divergence among populations were extremely low, suggesting very recent colonisation of the greater Mekong region. Populations were significantly structured into at least three discrete populations in the lower Mekong. Results of this study have implications for establishing effective conservation plans for managing both species, that represent economically important wild fishery resources for the region. For C. micropeltes, it is likely that a single fisheries stock in the Tonle Sap Great Lake is being exploited by multiple fisheries operations, and future management initiatives for this species in this region will need to account for this. For C. striata, conservation of natural levels of genetic variation will require management initiatives designed to promote population persistence at very localised spatial scales, as the high level of population structuring uncovered for this species indicates that significant unique diversity is present at this fine spatial scale.