453 resultados para Structure propagation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron field emission (EFE) properties of nitrogenated carbon nanotips (NCNTPs) were studied under high-vacuum conditions. The NCNTPs were prepared in a plasma-assisted hot filament chemical vapor deposition system using CH4 and N2 as the carbon and nitrogen sources, respectively. The work functions of NCNTPs were measured using x-ray photoelectron spectroscopy. The morphological and structural properties of NCNTPs were studied by field emission scanning electron microscopy, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. The field enhancement factors of NCNTPs were calculated using relevant EFE models based on the Fowler-Nordheim approximation. Analytical characterization and modeling results were used to establish the relations between the EFE properties of NCNTPs and their morphology, structure, and composition. It is shown that the EFE properties of NCNTPs can be enhanced by the reduction of oxygen termination on the surface as well as by increasing the ratio of the NCNTP height to the radius of curvature at its top. These results also suggest that a significant amount of electrons is emitted from other surface areas besides the NCNTP tops, contrary to the common belief. The outcomes of this study advance our knowledge on the electron emission properties of carbonnanomaterials and contribute to the development of the next-generation of advanced applications in the fields of micro- and opto-electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of initial stage control of the elemental composition and core/shell structure of binary SiC quantum dots by optimizing temporal variation of Si and C incoming fluxes and surface temperatures is shown via hybrid numerical simulations. Higher temperatures and influxes encourage the formation of a stoichiometric outer shell over a small carbon-enriched core, whereas lower temperatures result in a larger carbon-enriched core, Si-enriched undershell, and then a stoichiometric SiC outer shell. This approach is generic and is applicable to a broad range of semiconductor materials and nanofabrication techniques. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-component fluid model for a dusty plasma-sheath in an oblique magnetic field is presented. The study is carried out for the conditions when the thermophoretic force associated with the electron temperature gradient is one of the most important forces affecting dust grains in the sheath. It is shown that the sheath properties (the sheath size, the electron, ion and dust particle densities and velocities, the electric field potential, and the forces affecting the dust particles) are functions of the neutral gas pressure and ion temperature, the dust size, the dust material density, and the electron temperature gradient. Effects of plasma-dust collisions on the sheath structure are studied. It is shown that an increase in the forces pushing dust particles to the wall is accompanied by a decrease in the sheath width. The results of this work are particularly relevant to low-temperature plasma-enabled technologies, where effective control of nano- and microsized particles near solid or liquid surfaces is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on ab initio numerical simulations of the effect of Co and Cu dopings on the electronic structure and optical properties of ZnO, pursued to develop diluted magnetic semiconductors vitally needed for spintronic applications. The simulations are based upon the Perdew-Burke-Enzerh generalized gradient approximation on the density functional theory. It is revealed that the electrons with energies close to the Fermi level effectively transfer only between Cu and Co ions which substitute Zn atoms, and are located in the neighbor sites connected by an O ion. The simulation results are consistent with the experimental observations that addition of Cu helps achieve stable ferromagnetism of Co-doped ZnO. It is shown that simultaneous insertion of Co and Cu atoms leads to smaller energy band gap, redshift of the optical absorption edge, as well as significant changes in the reflectivity, dielectric function, refractive index, and electron energy loss function of ZnO as compared to the doping with either Co or Cu atoms. These highly unusual optical properties are explained in terms of the computed electronic structure and are promising for the development of the next-generation room-temperature ferromagnetic semiconductors for future spintronic devices on the existing semiconductor micromanufacturing platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conditions for carbon nanotube synthesis in the bulk of arc discharges and on plasma-exposed solid surfaces are compared to reveal the main distinguishing features of the growth kinetics and explain the striking difference between the growth of the nanotubes in both cases. It is shown that this difference is due to very different exposure of the discharge-synthesized and surface-bound nanotubes to ion fluxes, with the ratio of the ion fluxes collected per nanotube in the two cases reaching up to six orders of magnitude. Depending on the plasma parameters and the sizes of the nanotubes and metal catalyst particles, four distinct growth modes of the nanotubes in the plasma bulk have been identified. These results shed light on why single-walled carbon nanotube growth is more favourable in the bulk of arc plasmas rather than on plasma-exposed surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the nonuniformity of the electron density on the dispersion properties of surface waves propagating in a direction transverse to an external magnetic field is studied for the model of a two-layer plasma structure bounded by a metal. It is shown that the spectra of the waves can be effectively controlled by varying the degree of nonuniformity of the density and the dimensions of the layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion properties and topography of the fields of azimuthal surface wave (ASW) in a coaxial semiconductor structure with metal walls, placed in an external magnetic field, are investigated analytically and numerically. It is shown that an ASW phase-shifting device can be realized in the proposed structure. The conditions are indicated for which wave perturbations exist having frequencies that depend on the direction of phase change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical analysis of the bistability associated with the excitation of surface magnetoplasma waves (SWs) propagating across an external magnetic field at the semiconductor-metal interface by the attenuated total reflection (ATR) method is presented. The Kretschmann-Raether configuration of the ATR method is considered, i.e. a plane electromagnetic wave is incident onto a metal surface through a coupling prism. The third-order nonlinearity of the semiconductor medium is considered in the general form using the formalism of the third-order nonlinear susceptibilities and of the perturbation theory. The examples of the nonlinear mechanisms which influence the SW propagation are given. The analytical and numerical analyses show that the realization of bistable regimes of the SW excitation is possible. The SW amplitude values providing bistability in the structure are evaluated and are reasonably low to provide the experimental observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental investigation of functionally graded calcium phosphate-based bio-active films on Ti-6A1-4V orthopaedic alloy prepared in an RF magnetron sputtering plasma reactor is reported. The technique involves concurrent sputtering of Hydroxyapatite (HA) and Ti targets, which results in remarkably enhanced adhesion of the film to the substrate and stability of the interface. The films have been characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The XPS data show that the films are composed of O, Ca, P and Ti, and reveal the formation of O=P groups and hybridization of O-Ca-P. The XRD pattern shows that the Ca-P thin films are of crystalline calcium oxide phosphate (4CaO·P2O5) with preferred orientation varying with processing parameters. High-resolution optical emission spectra show that the emission of CaO is dominant. The CaO, PO and CaPO species are strongly influenced by deposition conditions. The introduction of Ti element during deposition provides a stable interface between bio-inert substrates Ti-6A1-4V and bioactive HA coating. In-vitro cell culturing tests suggest excellent biocompatibility of the Ca-P-Ti films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear process is considered of the surface wave third harmonics generation in a slowing-down semiconductor-metal structure. The process is conditioned by non-parabolicity of the charge carrier dispersion law. It is shown that in narrow-gap semiconducting materials it is necessary to account for the process together with the surface wave second harmonics generation conditioned by nonlinearity of quasi-hydrodynamics and the Maxwell equations. The conclusion is made that the third harmonies amplitude in narrow-gap semiconductors may exceed substantially the signal amplitude at the 3w frequency in a gas plasma and be of the same order with the surface waves second harmonies amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In approximation of weak heating influence of electron heating in the high-frequency surface wave field on propagation of surface wave (heating nonlinearity) is considered. It is shown that high-frequency surface wave propagates in direction perpendicular to the external magnetic field at the semiconductor-metal interface. A nonlinear dispersion equation is obtained and studied that allows to make conclusions about the contribution of heating nonlinearity to nonlinear process of considered interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem concerning the excitation of high-frequency surface waves (SW) propagating across an external magnetic field at a plasma-metal interface is considered. A homogeneous electric pump field is applied in the direction transverse with respect to the plasma-metal interface. Two high-frequency SW from different frequency ranges of existence and propagating in different directions are shown to be excited in this pump field. The instability threshold pump-field values and increments are obtained for different parameters of the considered waveguide structure. The results associated with saturation of the nonlinear instability due to self-interaction effects of the excited SW are given as well. The results are appropriate for both gaseous and semiconductor plasmas.