472 resultados para Steam-boilers, Water-tube.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland’s CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are: (1) water used for municipal purposes, (2) recreational water activities in rivers, (3) occupational exposures, (4) water extracted from contaminated aquifers, and; (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was a step forward in developing the scientific basis for a methodology to assess the resilience of water supply systems under the impacts of climate change. The improved measure of resilience developed in this project provides an approach to assess the ability of water supply systems to absorb the pressure due changing climate while sustaining supply, and their speed of recovery in case of failure. The approach developed can be applied to any generic water supply system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter investigates a variety of water quality assessment tools for reservoirs with balanced/unbalanced monitoring designs and focuses on providing informative water quality assessments to ensure decision-makers are able to make risk-informed management decisions about reservoir health. In particular, two water quality assessment methods are described: non-compliance (probability of the number of times the indicator exceeds the recommended guideline) and amplitude (degree of departure from the guideline). Strengths and weaknesses of current and alternative water quality methods will be discussed. The proposed methodology is particularly applicable to unbalanced designs with/without missing values and reflects the general conditions and is not swayed too heavily by the occasional extreme value (very high or very low quality). To investigate the issues in greater detail, we use as a case study, a reservoir within South-East Queensland (SEQ), Australia. The purpose here is to obtain an annual score that reflected the overall water quality, temporally, spatially and across water quality indicators for each reservoir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water management is vital for mine sites both for production and sustainability related issues. Effective water management is a complex task since the role of water on mine sites is multifaceted. Computers models are tools that represent mine site water interaction and can be used by mine sites to inform or evaluate their water management strategies. There exist several types of models that can be used to represent mine site water interactions. This paper presents three such models: an operational model, an aggregated systems model and a generic systems model. For each model the paper provides a description and example followed by an analysis of its advantages and disadvantages. The paper hypotheses that since no model is optimal for all situations, each model should be applied in situations where it is most appropriate based upon the scale of water interactions being investigated, either unit (operation), inter-site (aggregated systems) or intra-site (generic systems).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of extreme water level events along low-lying, highly populated and/or developed coastlines can lead to devastating impacts on coastal infrastructure. Therefore it is very important that the probabilities of extreme water levels are accurately evaluated to inform flood and coastal management and for future planning. The aim of this study was to provide estimates of present day extreme total water level exceedance probabilities around the whole coastline of Australia, arising from combinations of mean sea level, astronomical tide and storm surges generated by both extra-tropical and tropical storms, but exclusive of surface gravity waves. The study has been undertaken in two main stages. In the first stage, a high-resolution (~10 km along the coast) hydrodynamic depth averaged model has been configured for the whole coastline of Australia using the Danish Hydraulics Institute’s Mike21 modelling suite of tools. The model has been forced with astronomical tidal levels, derived from the TPX07.2 global tidal model, and meteorological fields, from the US National Center for Environmental Prediction’s global reanalysis, to generate a 61-year (1949 to 2009) hindcast of water levels. This model output has been validated against measurements from 30 tide gauge sites around Australia with long records. At each of the model grid points located around the coast, time series of annual maxima and the several highest water levels for each year were derived from the multi-decadal water level hindcast and have been fitted to extreme value distributions to estimate exceedance probabilities. Stage 1 provided a reliable estimate of the present day total water level exceedance probabilities around southern Australia, which is mainly impacted by extra-tropical storms. However, as the meteorological fields used to force the hydrodynamic model only weakly include the effects of tropical cyclones the resultant water levels exceedance probabilities were underestimated around western, northern and north-eastern Australia at higher return periods. Even if the resolution of the meteorological forcing was adequate to represent tropical cyclone-induced surges, multi-decadal periods yielded insufficient instances of tropical cyclones to enable the use of traditional extreme value extrapolation techniques. Therefore, in the second stage of the study, a statistical model of tropical cyclone tracks and central pressures was developed using histroic observations. This model was then used to generate synthetic events that represented 10,000 years of cyclone activity for the Australia region, with characteristics based on the observed tropical cyclones over the last ~40 years. Wind and pressure fields, derived from these synthetic events using analytical profile models, were used to drive the hydrodynamic model to predict the associated storm surge response. A random time period was chosen, during the tropical cyclone season, and astronomical tidal forcing for this period was included to account for non-linear interactions between the tidal and surge components. For each model grid point around the coast, annual maximum total levels for these synthetic events were calculated and these were used to estimate exceedance probabilities. The exceedance probabilities from stages 1 and 2 were then combined to provide a single estimate of present day extreme water level probabilities around the whole coastline of Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the combined azimuthal and axial shear of a compressible isotropic elastic circular cylindrical tube of finite extent, otherwise referred to as helical shear (which is an isochoric deformation). The equilibrium equations are formulated in terms of the principal stretches, and explicit necessary and sufficient conditions on the strain-energy function for the material to support this deformation are obtained and compared with those obtained previously for this problem. Several classes of strain-energy functions are derived and in some general cases complete solutions of the equilibrium equations are obtained. Existing results are recovered as special cases and some new results for the strain-energy functions derived are determined and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties. © 2013 Macmillan Publishers Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential impacts of extreme water level events on our coasts are increasing as populations grow and sea levels rise. To better prepare for the future, coastal engineers and managers need accurate estimates of average exceedance probabilities for extreme water levels. In this paper, we estimate present day probabilities of extreme water levels around the entire coastline of Australia. Tides and storm surges generated by extra-tropical storms were included by creating a 61-year (1949-2009) hindcast of water levels using a high resolution depth averaged hydrodynamic model driven with meteorological data from a global reanalysis. Tropical cyclone-induced surges were included through numerical modelling of a database of synthetic tropical cyclones equivalent to 10,000 years of cyclone activity around Australia. Predicted water level data was analysed using extreme value theory to construct return period curves for both the water level hindcast and synthetic tropical cyclone modelling. These return period curves were then combined by taking the highest water level at each return period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOST PAN stages in Australian factories use only five or six batch pans for the high grade massecuite production and operate these in a fairly rigid repeating production schedule. It is common that some of the pans are of large dropping capacity e.g. 150 to 240 t. Because of the relatively small number and large sizes of the pans, steam consumption varies widely through the schedule, often by ±30% about the mean value. Large fluctuations in steam consumption have implications for the steam generation/condensate management of the factory and the evaporators when bleed vapour is used. One of the objectives of a project to develop a supervisory control system for a pan stage is to (a) reduce the average steam consumption and (b) reduce the variation in the steam consumption. The operation of each of the high grade pans within the schedule at Macknade Mill was analysed to determine the idle (or buffer) time, time allocations for essential but unproductive operations (e.g. pan turn round, charging, slow ramping up of steam rates on pan start etc.), and productive time i.e. the time during boil-on of liquor and molasses feed. Empirical models were developed for each high grade pan on the stage to define the interdependence of the production rate and the evaporation rate for the different phases of each pan’s cycle. The data were analysed in a spreadsheet model to try to reduce and smooth the total steam consumption. This paper reports on the methodology developed in the model and the results of the investigations for the pan stage at Macknade Mill. It was found that the operation of the schedule severely restricted the ability to reduce the average steam consumption and smooth the steam flows. While longer cycle times provide increased flexibility the steam consumption profile was changed only slightly. The ability to cut massecuite on the run among pans, or the use of a high grade seed vessel, would assist in reducing the average steam consumption and the magnitude of the variations in steam flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent international experiences have reinforced the peril to people and property from rising sea levels and associated water events. The related risks, while perhaps more obvious for properties located in coastal regions, can also impact upon inland properties. These risks are slowly influencing changes to planning practices and attitudes. This paper examines these risks from the perspective of land values and identifies the matters, and processes, that should be adopted in valuation practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important that industries’ water interactions respect the human right to water. Historically, within the mining industry there has been a disconnect between the management of sites’ internal water interactions and the consequences of their external impacts, including human rights impacts. This poses a challenge for the mining industry as it attempts to put the Ruggie Guiding Principles for Business and Human Rights into practice, particularly as United Nations has recently recognised the human right to water. A technical framework such as the Minerals Council of Australia’s Water Accounting Framework (WAF) can help to bridge this disconnect and to integrate human rights considerations into business practice by connecting a site’s external and internal water interactions and by encouraging regular monitoring of performance. However, at present the connection is limited since the WAF lacks the capability to formalise a site’s social water context. This work presents the Social Water Assessment Protocol (SWAP), a scoping tool consisting of a set of questions organised into taxonomic themes that capture a site’s social water context and that can be combined with the WAF to better connect human rights with mine water interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the coming decades, the mining industry faces the dual challenge of lowering both its water and energy use. This presents a difficulty since technological advances that decrease the use of one can increase the use of the other. Historically, energy and water use have been modelled independently, making it difficult to evaluate the true costs and benefits from water and energy improvements. This paper presents a hierarchical systems model that is able to represent interconnected water and energy use at a whole of site scale. In order to explore the links between water and energy four technologies advancements have been modelled: use of dust suppression additives, the adoption of thickened tailings, the transition to dry processing and the incorporation of a treatment plant. The results show a synergy between decreased water and energy use for dust suppression additives, but a trade-off for the others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three initiatives with respect to water reporting in the mining sector are compared in this paper to understand the quantities that are asked for by each initiative and the guidelines of those initiatives through means of a case study. The Global Reporting Initiative (GRI) was chosen because it has achieved widespread acceptance amongst mining companies and its water-related indicators are widely reported in corporate sustainability reporting. In contrast, the Water Footprint Network, which has been an important initiative in food and agricultural industries, has had low acceptance in the mining industry. The third initiative is the Water Accounting Framework, a collaboration between The Minerals Council of Australia and the Sustainable Minerals Institute of the University of Queensland. A water account had previously been created according to the Water Accounting Framework for the case study site, an open pit coal mine in the Bowen Basin. The resulting account provided consistent data for the Global Reporting Initiative (GRI) and the Water Footprint attributable to mining but in particular, a deficiency in the GRI indicator of EN10 reuse and recycling efficiency was illustrated quantitatively. This has far-reaching significance due to the widespread use of GRI indicators in mining corporate reports.