375 resultados para Socket healing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Regenerative endodontics is an innovative treatment concept aiming to regenerate pulp, dentin and root structures. In the diseased or necrotic tooth, the limitation in vascular supply renders successful tissue regeneration/generation in a whole tooth challenging. The aim of this study is to evaluate the ability of vascularized tissue to develop within a pulpless tooth using tissue engineering techniques. Materials and methods A pulpless tooth chamber, filled with collagen I gel containing isolated rat dental pulp cells (DPC) and angiogenic growth factors, was placed into a hole created in the femoral cortex or into its own tooth socket, respectively. The gross, histological and biochemical characteristics of the de novo tissue were evaluated at 4 and 8weeks post-transplantation. Results Tooth revascularization and tissue generation was observed only in the femur group, confirming the important role of vascular supply in tissue regeneration. The addition of cells and growth factors significantly promoted connective tissue production in the tooth chamber. Conclusion Successful revascularization and tissue regeneration in this model demonstrate the importance of a direct vascular supply and the advantages of a stem cell approach. © 2012 John Wiley & Sons A/S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field of research of epithelial-mesenchymal transitions, EMT, and its reverse, mesenchymal-epithelial transitions, MET, has expanded very rapidly indeed from its beginnings, heralded by Professor Betty Hay in the 1970s and 1980s. This expansion has involved the realisation that the EMT was not just an interesting phenomenon of early developmental morphogenetic cell behaviour, but bore remarkable resemblance to clinically crucial pathological events in cancer invasion. Not surprisingly, this discipline soon became numerically dominant in the EMT publication field. Simultaneously, the EMT concept has been extended to normal physiological wound healing. Exploration revealed that these resemblances were more than skin deep: the same sets of growth factors, receptors, transcription factors, epigenetic marks and signalling pathways turned up repeatedly in EMTs and METs in a variety of contexts, both pathological and normal. This molecular genetic research in turn uncovered similarities of the EMT signature to that of fibrosis, a set of diseases which is of enormous clinical importance, rivalling that of cancer. Most recently, and more surprisingly, the EMT signature has shown considerable similarity to that found in stem cell and cancer stem cell biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue remodeling is a key process involved in normal development, wound healing, bone remodeling, and embryonic implantation, as well as pathological conditions such as tumor invasion and metastasis, and angiogenesis. The degradation of the extracellular matrix that is associated with those processes is mediated by a number of families of extracellular proteinases. These families include the serine proteinases, such as the plasminogen-urokinase plasminogen activator system and leukocyte elastases, the cysteine proteinases, like cathepsin D and L, and the zinc-dependent matrix metalloproteinases (MMPs). Accumulating evidence has highlighted the central role of MMP-driven extracellular matrix remodeling in mammary gland development and breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SPARC (secreted protein acidic and rich in cysteine)/BM40/Osteonectin is a matricellular protein with multiple effects on cell behaviour. In vitro, its major known functions are anti-adhesive and anti-proliferative, and it is associated with tissue remodelling and cancer in vivo. SPARC is overexpressed in many cancers, including breast cancer, and the effects of SPARC seem to be cell type-specific. To study the effects of SPARC on breast cancer, we transfected SPARC into the MDA-MB-231 BAG, human breast cancer cell line using the Tet-On inducible system. By western analysis, we found low background levels in the MDA-MB-231 BAG and clone X parental cells, and prominent induction of SPARC protein expression after doxycycline treatment in SPARC transfected clones X5, X21, X24 and X75. Induction of SPARC expression did not affect cell morphology or adhesiveness to collagens type I and IV, but it slowed the rate of proliferation in adherent cultures. Cell cycle analysis showed that SPARC slowed the progression to S phase. Doxycycline induction of SPARC also slowed the rate of monolayer wound closure in the cultured wound healing assay. Thymidine inhibition of proliferation abrogated this effect, confirming that it was due to anti-proliferation rather than inhibition of migration. Consistent with this, we were unable to detect any differences in migration and Matrigel outgrowth analysis of doxycycline-stimulated cells. We conclude that SPARC is inhibitory to human breast cancer cell proliferation, and does not stimulate migration, in contrast to its stimulatory effects reported for melanoma (proliferation and migration) and glioma (migration) cells. Similar growth repression by SPARC has been reported for ovarian cancer cells, and this may be a common feature among carcinomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the role of bone sialoprotein (BSP), a secreted glycoprotein normally found in bone, in breast cancer progression. To explore functions for BSP in human breast cancer invasion and metastasis, the full-length BSP cDNA was transfected into the MDA-MB-231-BAG human breast cancer cell line under the control of the CMV promoter. Clones expressing BSP and vector control clones were isolated. BSP producing clones showed increased monolayer wound healing, a faster rate of stellate outgrowth in Matrigel and increased rate of invasion into a collagen matrix when compared to control clones. Clones were also examined in models of breast cancer growth and metastasis in vivo. BSP transfected clones showed an increased rate of primary tumor growth following mammary fat pad injection of nude mice. BSP transfected clones and vector control clones metastasized to soft organs and bone at a similar rate after intra-cardiac injection as determined by real-time PCR and X-ray analysis. Although these organs were targets for both BSP transfected and non-transfected cells, the size of the metastatic lesion was shown to be significantly larger for BSP expressing clones. This was determined by real-time PCR analysis for soft organs and by X-ray analysis of bone lesions. For bone this was confirmed by intra-tibial injections of cells in nude mice. We conclude that BSP acts to drive primary and secondary tumor growth of breast cancers in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epithelial-mesenchymal transition (EMT) is a feature of migratory cellular processes in all stages of life, including embryonic development and wound healing. Importantly, EMT features cluster with disease states such as chronic fibrosis and cancer. The dissolution of the E-cadherin-mediated adherens junction (AJ) is a key preliminary step in EMT and may occur early or late in the growing epithelial tumour. This is a first step for tumour cells towards stromal invasion, intravasation, extravasation and distant metastasis. The AJ may be inactivated in EMT by directed E-cadherin cleavage; however, it is increasingly evident that the majority of AJ changes are transcriptional and mediated by an expanding group of transcription factors acting directly or indirectly to repress E-cadherin expression. A review of the current literature has revealed that these factors may regulate each other in a hierarchical pattern where Snail1 (formerly Snail) and Snail2 (formerly Slug) are initially induced, leading to the activation of Zeb family members, TCF3, TCF4, Twist, Goosecoid and FOXC2. Within this general pathway, many inter-regulatory relationships have been defined which may be important in maintaining the EMT phenotype. This may be important given the short half-life of Snail1 protein. We have investigated these inter-regulatory relationships in the mesenchymal breast carcinoma cell line PMC42 (also known as PMC42ET) and its epithelial derivative, PMC42LA. This review also discusses several newly described regulators of E-cadherin repressors including oestrogen receptor-α and new discoveries in hypoxia- and growth factor-induced EMT. Finally, we evaluated how these findings may influence approaches to current cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Collagen synthesis inhibition potentially can reduce adhesion formation after tendon injury but also may affect cutaneous wound healing. We hypothesized that a novel orally administered collagen synthesis inhibitor (CPHI-I) would substantially reduce flexor tendon adhesions after injury, without any clinically important effect on cutaneous wound healing. The experiments were performed in a rat model with an in-continuity crush injury model in the rat hindfoot flexor tendon to provoke adhesion formation. Assays of dermal collagen production and the rate of healing of an excised wound were performed to assess cutaneous wound healing. Animals in the treatment groups received CPHI-I for 1, 2, or 6 weeks and were assessed at either 2 or 6 weeks. The work of flexion in the injured digit was reduced in the CPHI-I-treated animals compared with control animals, (0.188 J versus 0.0307 J at 2 weeks, and 0.0231 J versus 0.0331 J at 6 weeks) The cutaneous wound healing rate was similar in all animals, but dermal collagen synthesis was reduced in the treated animals. The CPHI-I seems to reduce tendon adhesion, and although collagen synthesis was reduced in cutaneous wounds, CPHI-I did not retard wound healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasion of extracellular matrices is crucial to a number of physiological and pathophysiological states, including tumor cell metastasis, arthritis, embryo implantation, wound healing, and early development. To isolate invasion from the additional complexities of these scenarios a number of in vitro invasion assays have been developed over the years. Early studies employed intact tissues, like denuded amniotic membrane (1) or embryonic chick heart fragments (2), however recently, purified matrix components or complex matrix extracts have been used to provide more uniform and often more rapid analyses (for examples, see the following integrin studies). Of course, the more holistic view of invasion offered in the earlier assays is valuable and cannot be fully reproduced in these more rapid assays, but advantages of reproducibility among replicates, ease of preparation and analysis, and overall high throughput favor the newer assays. In this chapter, we will focus on providing detailed protocols for Matrigel-based assays (Matrigel=reconstituted basement membrane; reviewed in ref. (3)). Matrigel is an extract from the transplantable Engelbreth-Holm-Swarm murine sarcoma that deposits a multilammelar basement membrane. Matrigel is available commercially (Becton Dickinson, Bedford, MA), and can be manipulated as a liquid at 4°C into a variety of different formats. Alternatively, cell culture inserts precoated with Matrigel can be purchased for even greater simplicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The osteoimmunomodulatory property of bone biomaterials is a vital property determining the in vivo fate of the implants. Endowing bone biomaterials with favorable osteoimmunomodulatory properties is of great importance in triggering desired immune response and thus supports the bone healing process. Magnesium (Mg) has been recognized as a revolutionary metal for applications in orthopedics due to it being biodegradable, biocompatible, and having osteoconductive properties. However, Mg's high rate of degradation leads to an excessive inflammatory response and this has restricted its application in bone tissue engineering. In this study, β-tricalcium phosphate (β-TCP) was used to coat Mg scaffolds in an effort to modulate the detrimental osteoimmunomodulatory properties of Mg scaffolds, due to the reported favorable osteoimmunomodulatory properties of β-TCP. It was noted that macrophages switched to the M2 extreme phenotype in response to the Mg-β-TCP scaffolds, which could be due to the inhibition of the toll like receptor (TLR) signaling pathway. VEGF and BMP2 were significantly upregulated in the macrophages exposed to Mg-β-TCP scaffolds, indicating pro-osteogenic properties of macrophages in β-TCP modified Mg scaffolds. This was further demonstrated by the macrophage-mediated osteogenic differentiation of bone marrow stromal cells (BMSCs). When BMSCs were stimulated by conditioned medium from macrophages cultured on Mg-β-TCP scaffolds, osteogenic differentiation of BMSCs was significantly enhanced; whereas osteoclastogenesis was inhibited, as indicated by the downregualtion of MCSF, TRAP and inhibition of the RANKL/RANK system. These findings suggest that β-TCP coating of Mg scaffolds can modulate the scaffold's osteoimmunomodulatory properties, shift the immune microenvironment towards one that favors osteogenesis over osteoclastogenesis. Endowing bone biomaterials with favorable osteoimmunomodulatory properties can be a highly valuable strategy for the development or modification of advanced bone biomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To provide card holder authentication while they are conducting an electronic transaction using mobile devices, VISA and MasterCard independently proposed two electronic payment protocols: Visa 3D Secure and MasterCard Secure Code. The protocols use pre-registered passwords to provide card holder authentication and Secure Socket Layer/ Transport Layer Security (SSL/TLS) for data confidentiality over wired networks and Wireless Transport Layer Security (WTLS) between a wireless device and a Wireless Application Protocol (WAP) gateway. The paper presents our analysis of security properties in the proposed protocols using formal method tools: Casper and FDR2. We also highlight issues concerning payment security in the proposed protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold atmospheric pressure plasma (APP) is a recent, cutting-edge antimicrobial treatment. It has the potential to be used as an alternative to traditional treatments such as antibiotics and as a promoter of wound healing, making it a promising tool in a range of biomedical applications with particular importance for combating infections. A number of studies show very promising results for APP-mediated killing of bacteria, including removal of biofilms of pathogenic bacteria such as Pseudomonas aeruginosa. However, the mode of action of APP and the resulting bacterial response are not fully understood. Use of a variety of different plasma-generating devices, different types of plasma gases and different treatment modes makes it challenging to show reproducibility and transferability of results. This review considers some important studies in which APP was used as an antibacterial agent, and specifically those that elucidate its mode of action, with the aim of identifying common bacterial responses to APP exposure. The review has a particular emphasis on mechanisms of interactions of bacterial biofilms with APP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher’s equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY: Recently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis. While much investigation is focused on preventing disease progression, here we fabricate strontium-containing scaffolds and show that they enhance bone defect healing in the femurs of rats induced by ovariectomy. INTRODUCTION: Recently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis due to its ability to prevent bone loss in osteoporotic patients. Although much emphasis has been placed on using pharmacological agents for the prevention of disease, much less attention has been placed on the construction of biomaterials following osteoporotic-related fracture. The aim of the present study was to incorporate bioactive strontium (Sr) trace element into mesoporous bioactive glass (MBG) scaffolds and to investigate their in vivo efficacy for bone defect healing in the femurs of rats induced by ovariectomy. METHODS: In total, 30 animals were divided into five groups as follows: (1) empty defect (control), (2) empty defects with estrogen replacement therapy, (3) defects filled with MBG scaffolds alone, (4) defects filled with MBG + estrogen replacement therapy, and (5) defects filled with strontium-incorporated mesopore-bioglass (Sr-MBG) scaffolds. RESULTS: The two groups demonstrating the highest levels of new bone formation were the defects treated with MBG + estrogen replacement therapy and the defects receiving Sr-MBG scaffolds as assessed by μ-CT and histological analysis. Furthermore, Sr scaffolds had a reduced number of tartrate-resistant acid phosphatase-positive cells when compared to other modalities. CONCLUSION: The results from the present study demonstrate that the local release of Sr from bone scaffolds may improve fracture repair. Future large animal models are necessary to investigate the future relationship of Sr incorporation into biomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Icing (cryotherapy) is being widely used for the treatment of closed soft tissue trauma (CSTT), such as those resulting from sport injuries. It is believed that cryotherapy induces vasoconstriction and through this mechanism reduces inflammation [1]. However, the impact of this technique on the healing of impaired vasculature and muscle injuries following trauma remains controversial. Recent evidence suggests that the muscle regeneration is delayed after cryotherapy [2]. Consequently, we aimed to investigate the effect of cryotherapy on the vascular morphology following CSTT using an experimental model in rats by contrast-enhanced micro-CT imaging. METHODS Fifty four rats were divided into three main groups: control (no injury, n=6), sham (CSTT but no icing treatment, n=24) and icing (CSTT, treated with one session of ice block massaged directly on the injured muscle for 20 minutes, n=24). The CSTT was induced to the left thigh (Biceps Femoris) of anaesthetised rats (Male, Wistar) to create a standardized and reproducible vascular and muscle injury using an impact device [3]. Following trauma, animals were euthanized after 1, 3, 7, and 28 days healing time (n=6 for each time point). For a three-dimensional vascular morphological assessment, the blood vessels of euthanised rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. Both hind-limbs were dissected, and then the injured and non-injured limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) and total volume of the perfused blood vessels (TVV) was calculated. More detailed morphological parameters such as vessel volume (VV), diameter (VD), spacing (VSp), number (VN) and connectivity (VConn) were quantified through high resolution (6 µm), micro-CT-scanned biopsy samples (diameter: 8mm) taken directly from the region of the injured muscles. The biopsies were then analysed histologically to confirm the results derived from contrast-enhanced micro-CT imaging. RESULTS AND DISCUSSION The TVV was significantly higher in the injured legs compared to the non-injured legs at day 1 and 7 in the sham group and at day 28 in both sham and icing groups. The biopsies from the injured legs of the icing group showed a significant reduction in VV, VN, VD, VConn and an increase in VSp compared to those in the sham and control groups at days 1, 3 and 7, post injury. While the injured legs of the sham group exhibited a decrease in VN and VConn 28 days post trauma, indicating a return to the original values prior to trauma, these parameters had increased in the icing group (Figure 1). Also, at day 1 post injury, VV and VD of the injured legs were significantly higher in the sham group compared to the icing group, which may be attributed to the effect of vasoconstriction induced by icing. Further histomorphological evaluation of day 1 post injury, indicated that although cryotherapy significantly reduced the injury size and influx of inflammatory cells, including macrophages and neutrophils, a delay in vascular and muscle fiber regeneration was found at later time points confirming other reports from the literature [2]. CONCLUSIONS We have demonstrated using micro-CT imaging that the vascular morphology changes after CSTT, and that its recovery is affected by therapeutic modalities such as icing. This may be useful for the development of future clinical monitoring, diagnosis and treatment of CSTT. While icing reduces the swelling after trauma, our results suggest that it may delay the recovery of the vasculature in the injured tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantifying the impact of biochemical compounds on collective cell spreading is an essential element of drug design, with various applications including developing treatments for chronic wounds and cancer. Scratch assays are a technically simple and inexpensive method used to study collective cell spreading; however, most previous interpretations of scratch assays are qualitative and do not provide estimates of the cell diffusivity, D, or the cell proliferation rate,l. Estimating D and l is important for investigating the efficacy of a potential treatment and provides insight into the mechanism through which the potential treatment acts. While a few methods for estimating D and l have been proposed, these previous methods lead to point estimates of D and l, and provide no insight into the uncertainty in these estimates. Here, we compare various types of information that can be extracted from images of a scratch assay, and quantify D and l using discrete computational simulations and approximate Bayesian computation. We show that it is possible to robustly recover estimates of D and l from synthetic data, as well as a new set of experimental data. For the first time, our approach also provides a method to estimate the uncertainty in our estimates of D and l. We anticipate that our approach can be generalized to deal with more realistic experimental scenarios in which we are interested in estimating D and l, as well as additional relevant parameters such as the strength of cell-to-cell adhesion or the strength of cell-to-substrate adhesion.