440 resultados para Seasonal Co-integration
Resumo:
This paper reports on ab initio numerical simulations of the effect of Co and Cu dopings on the electronic structure and optical properties of ZnO, pursued to develop diluted magnetic semiconductors vitally needed for spintronic applications. The simulations are based upon the Perdew-Burke-Enzerh generalized gradient approximation on the density functional theory. It is revealed that the electrons with energies close to the Fermi level effectively transfer only between Cu and Co ions which substitute Zn atoms, and are located in the neighbor sites connected by an O ion. The simulation results are consistent with the experimental observations that addition of Cu helps achieve stable ferromagnetism of Co-doped ZnO. It is shown that simultaneous insertion of Co and Cu atoms leads to smaller energy band gap, redshift of the optical absorption edge, as well as significant changes in the reflectivity, dielectric function, refractive index, and electron energy loss function of ZnO as compared to the doping with either Co or Cu atoms. These highly unusual optical properties are explained in terms of the computed electronic structure and are promising for the development of the next-generation room-temperature ferromagnetic semiconductors for future spintronic devices on the existing semiconductor micromanufacturing platform.
Resumo:
Using density functional theory, we have investigated the catalytic properties of bimetallic complex catalysts PtlAum(CO)n (l + m = 2, n = 1–3) in the reduction of SO2 by CO. Due to the strong coupling between the C-2p and metal 5d orbitals, pre-adsorption of CO molecules on the PtlAum is found to be very effective in not only reducing the activation energy, but also preventing poisoning by sulfur. As result of the coupling, the metal 5d band is broadened and down-shifted, and charge is transferred from the CO molecules to the PtlAum. As SO2 is adsorbed on the catalyst, partial charge moves to the anti-σ bonding orbitals between S and O in SO2, weakening the S–O bond strength. This effect is enhanced by pre-adsorbing up to three CO molecules, therefore the S–O bonds become vulnerable. Our results revealed the mechanism of the excellent catalytic properties of the bimetallic complex catalysts.
Resumo:
The catalytic activities, to the reduction of SO2 by CO, of clusters PtlAum (l + m = 2) with or without preadsorbing CO molecules are investigated using first-principles density functional theory. We find that the PtAu(CO)n (n = 1–3) clusters show more excellent catalytic properties than either pure metallic catalysts. Preadsorption of CO to the catalysts could effectively avoid platinum-based catalyst sulfur poisoning; as more CO molecules preadsorbed to the catalysts, the energy barriers for the carbonyl sulfide (COS) molecule’s desorption from the catalyst are remarkably decreased. We propose an ideal catalytic cycle to simultaneously get rid of SO2 and CO over the catalysts PtAu(CO)3.
Consumers persepctive on pharmacists integration into private primary healthcare clinics in Malaysia
Resumo:
Background: Pharmacists are considered medication experts but are underutilised mainly at the periphery of the primary healthcare team. General medical practitioners (GPs) in Malaysian private healthcare clinics are granted rights to prescribe and dispense medications, thus furhter limiting pharmacists involvement in ensuring safe use of medicines. The integration of pharmacist into private primary healthcare clinics has the potential to reduce medication-relation problems. Objective: To explore the views of consumers on the integration of pharmacists within private primary healthcare clinics in Malaysia. Method: A purposive sample of healthcare consumers in Selangor and Kuala Lumpur, Malaysia were invited to participate in focus groups and semi-structured interviews. Sessions were audio recorded and transcribed verbatim and thematically analysed using NVivo 10. Results: A total of 24 healthcare consumers particpated in two focus groups and six semi-structured interviews. Four major themes were identified: (1) Pharmacists role viewed mainly as supplying medications, (2) Readiness to accept pharmacists in private healthcare clinics, (3) Willingness to pay for pharmacy services, and (4) Concerns about GPs resistance to pharmacist integration. Consumers felt that a pharmacist integrated into private prumary healthcare clinics could offer potential benefits such as counter-checking prescriptions to ensure correct medication is supplied and counselling consumers on their medications and the potential side effects. The potential to increase in costs to consumers and GPs reluctance were perceived as barriers to integration. Conclusion: This study provides insights into consumers perspectives on the roles of pharmacists within private primary healthcare clinics in Malaysia. Consumers generally supported pharmacist integration into private primary healthcare clinics. However, for pharmacists to expand their capacity in providing integrated and collaborative primary care services to consumers, barriers to pharmacist integration need to be addressed.
Resumo:
Inductive fault current limiters (FCLs) have several advantages, such as significant current limitation, immediate triggering and relatively low losses. Despite these advantages, saturated core FCLs have not been commercialized due to its large size and associated high costs. A major remaining challenge is to reduce the footprint of the device. In this paper, a solution to reduce the overall footprint is proposed and discussed. In arrangements of windings on a core in reactors such as FCLs, the core is conventionally grounded. The electrical insulation distance between high voltage winding and core can be reduced if the core is left at floating potential. This paper shows the results of the investigation carried out on the insulation of such a coil-core assembly. Two experiments were conducted. In the first, the behavior of the apparatus under high voltage conditions was assessed by performing power frequency and lightning impulse tests. In the second experiment, a low voltage test was conducted during which voltages of different frequencies and pulses with varying rise times were applied. A finite element simulation was also carried out for comparison and further investigation
Resumo:
Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne viral disease characterized by fever, hemorrhagic, kidney damage and hypotension, is caused by different species of hantaviruses [1]. Every year, HFRS affects thousands of people in Asia, and more than 90% of these cases are reported in China [2, 3]. Due to its high fatality, HFRS has attracted considerable research attention, and prior studies have predominantly focused on quantifying HFRS morbidity [4], identifying high risk areas [5] and populations [6], or exploring peak time of HFRS occurrence [3]. To date, no study has assessed the seasonal amplitude of HFRS in China, even though it reveals the seasonal fluctuation and thus may provide pivotal information on the possibility of HFRS outbreaks.
Resumo:
This study aimed to explore the spatiotemporal patterns, geographic co-distribution, and socio-ecological drivers of childhood pneumonia and diarrhea in Queensland. A Bayesian conditional autoregressive model was used to quantify the impacts of socio-ecological factors on both childhood pneumonia and diarrhea at a postal area level. A distinct seasonality of childhood pneumonia and diarrhea was found. Childhood pneumonia and diarrhea mainly distributed in northwest of Queensland. Mount Isa was the high-risk cluster where childhood pneumonia and diarrhea co-distributed. Emergency department visits (EDVs) for pneumonia increased by 3% per 10-mm increase in monthly average rainfall, in wet seasons. In comparison, a 10-mm increase in monthly average rainfall may increase 4% of EDVs for diarrhea. Monthly average temperature was negatively associated with EDVs for childhood diarrhea, in wet seasons. Low socioeconomic index for areas (SEIFA) was associated with high EDVs for childhood pneumonia. Future pneumonia and diarrhea prevention and control measures in Queensland should focus more on Mount Isa.
Resumo:
The Australian Civil Aviation Safety Authority (CASA) currently lists more than 100 separate entities or organisations which maintain a UAS Operator Certificate (UOC) [1]. Approved operations are overwhelmingly a permutation of aerial photography, surveillance, survey or spotting and predominantly, are restricted to Visual Line of Sight (VLOS) operations, below 400 feet, and not within 3 NM of an aerodrome. However, demand is increasing for a Remote Piloted Aerial System (RPAS) regulatory regime which facilitates more expansive operations, in particular unsegregated, Beyond Visual Line of Sight (BVLOS) operations. Despite this demand, there is national and international apprehension regarding the necessary levels of airworthiness and operational regulation required to maintain safety and minimise the risk associated with unsegregated operations. Fundamental to addressing these legitimate concerns will be the mechanisms that underpin safe separation and collision avoidance. Whilst a large body of research has been dedicated to investigating on-board, Sense and Avoid (SAA) technology necessary to meet this challenge, this paper focuses on the contribution of the NAS to separation assurance, and how it will support, as well as complicate RPAS integration. The paper collates and presents key, but historically disparate, threads of Australian RPAS and NAS related information, and distils it with a filter focused on minimising RPAS collision risk. Our ongoing effort is motivated by the need to better understand the separation assurance contribution provided by the NAS layers, in the first instance, and subsequently employ this information to identify scenarios where the coincident collision risk is demonstrably low, providing legitimate substantiation for concessions on equipage and airworthiness standards.
Resumo:
The value of information technology (IT) is often realized when continuously being used after users’ initial acceptance. However, previous research on continuing IT usage is limited for dismissing the importance of mental goals in directing users’ behaviors and for inadequately accommodating the group context of users. This in-progress paper offers a synthesis of several literature to conceptualize continuing IT usage as multilevel constructs and to view IT usage behavior as directed and energized by a set of mental goals. Drawing from the self-regulation theory in the social psychology, this paper proposes a process model, positioning continuing IT usage as multiple-goal pursuit. An agent-based modeling approach is suggested to further explore causal and analytical implications of the proposed process model.
Resumo:
Vascular endothelial growth factor (VEGF) promotes growth of blood or lymphatic vessels. The aim of the current study is to identify relationships between VEGF-A and VEGF-C, and their impact in angiogenesis and metastases in thyroid cancers. VEGF-A and VEGF-C mRNA and protein expression was investigated in 136 thyroid cancers (123 papillary thyroid carcinomas and 13 undifferentiated thyroid carcinomas) and 40 matched lymph node metastases with papillary thyroid carcinoma using reverse transcription polymerase chain reaction and immunohistochemistry. VEGF-A and VEGF-C mRNA expression was significantly different between conventional papillary thyroid carcinoma, follicular variant of papillary thyroid carcinoma, and undifferentiated thyroid carcinomas (P = 1 x 10(-6) and 1 x 10(-5), respectively). In undifferentiated carcinoma, VEGF-A and VEGF-C protein overexpression was noted in all cases. VEGF-A and VEGF-C mRNA overexpression was noted in 51% (n = 62) and 27% (n = 33) of the papillary thyroid carcinomas, whereas VEGF-A and VEGF-C protein overexpression was also identified in 70% (n = 86) and 62% (n = 76) of the carcinomas. VEGF-A mRNA was significantly higher in cancers with lymph node metastases compared with nonmetastatic cancers (P = .001), whereas most metastatic cancers underexpressed VEGF-C (P = .0002), with a similar trend for protein. The expression of VEGF-A and VEGF-C correlated with each other at both mRNA and protein levels (P = .00004 and .003, respectively). In summary, VEGF-A and -C expressions correlate with the pathological parameters and metastatic status of thyroid carcinomas. The significant correlations between the expressions of these genes add weight to hypotheses concerning VEGF-A and -C interaction in cancer progression.
Resumo:
We no longer have the luxury of time as the effects of climate change are being felt, according to the latest Intergovernmental Panel on Climate Change report, on every continent and in every ocean. More than 50% of the population of the United States and 85% of Australians live in coastal regions. The number of people living in the world’s coastal regions is expected to increase along with the need to improve capacity to mitigate hazards , and manage the multiple risks that have been identified by the scientific community. Under the auspices of the Association of Collegiate Schools of Architecture (ACSA) design academics and practitioners from the Americas, Asia, and Australia met in Fort Lauderdale, Florida for the fourth Subtropical Cities international conference to share outcomes of research and new pedagogies to address the critical transformation of the physical environments and infrastructures of the world’s vulnerable coastal communities. The theme of Subtropical Cities, adopted by the ACSA for its Fall 2014 Conference, is not confined entirely to a latitudinal or climatic frame of reference. The paper and project presentations addressed a range of theoretical, practice-led, and education-oriented research topics in architecture and urban design related to the subtropics, with emphasis on urban and coastal regions. More than half the papers originate from universities and practices in coastal regions. Threads emerged from a tapestry of localized investigations to reveal a more global understanding about possible futures we are designing for current and future generations. The one hundred-plus conference delegates and presenters represented 33 universities and institutions from across the United States, Mexico, Canada, Australia, the Middle East, Peru and China. Case studies from India, Morocco, Tahiti, Indonesia, Jordan, and Cambodia were also presented, expanding the global knowledge base. Co-authored submissions presented new directions for architecture and design, with a resounding theme of collaboration across diverse disciplines. The ability to deal with abstraction and complexity, and the capacity to develop synthesis and frameworks for defining problem boundaries can be considered key attributes of architectural thinking. Such a unique set of abilities can forge collaboration with different professional disciplines to achieve extraordinary outcomes. As the broad range of papers presented at this conference suggest, existing architectural and urban typologies and practices are increasingly considered part of the cause and not the solution to adapting to climate change and sea level rise. Design responses and the actions needed to generate new and unfamiliar forms of urbanism and infrastructure for defense, adaptation, and retreat in subtropical urban regions are being actively explored in academic design studios and research projects around the world. Many presentations propose provocative and experimental strategies as global climate moves beyond our “comfort zone”. The ideas presented at the Subtropical Cities conference are timely as options for low-energy passive climatic design are becoming increasingly limited in the context of changing climate. At the same time, ways of reducing or obsoleting energy intensive mechanical systems in densely populated urban centres present additional challenges for designers and communities as a whole. The conference was marked by a common theme of trans-disciplinary research, where design integration with emerging technologies resonate with a reaffirmation of the centrality of design thinking, expanding the scope of the traditional architecture studio pedagogy to integrate knowledge from other disciplines and the participation of diverse communities.
Resumo:
Supercapacitors are increasingly used as short term energy storage elements in distributed generation systems. The traditional approach in integrating them to the main system is the use of interfacing dc-dc converters which introduce additional costs and power losses. This paper therefore, presents a novel direct integration scheme for supercapacitors and thereby eliminates associated costs and power losses of interfacing converters. The idea is simply to replace ordinary capacitors of three-level flying-capacitor rectifiers with supercapacitors and operate them under variable voltage conditions. An analysis on the reduction of power losses by the proposed system is presented. Furthermore, supercapacitor sizing and implementation issues such as effects of the variable voltage operation and resistive behavior of supercapacitors at high frequencies are also discussed. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term power fluctuations in wind generation system.
Resumo:
Battery/supercapacitor hybrid energy storage systems have been gaining popularity in electric vehicles due to their excellent power and energy performances. Conventional designs of such systems require interfacing dc-dc converters. These additional dc-dc converters increase power loss, complexity, weight and cost. Therefore, this paper proposes a new direct integration scheme for battery/supercapacitor hybrid energy storage systems using a double ended inverter system. This unique approach eliminates the need for interfacing converters and thus it is free from aforementioned drawbacks. Furthermore, the proposed system offers seven operating modes to improve the effective use of available energy in a typical drive cycle of a hybrid electric vehicle. Simulation results are presented to verify the efficacy of the proposed system and control techniques.
Resumo:
Battery-supercapacitor hybrid energy storage systems are becoming popular in the renewable energy sector due to their improved power and energy performances. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid interfacing inverter. These additional dc-dc converters increase power losses, complexity and cost. Therefore, possibility of their direct connection is investigated in this paper. The inverter system used in this study is formed by cascading two 3-level inverters, named as the “main inverter” and the “auxiliary inverter”, through a coupling transformer. In the test system the main inverter is connected with the rectified output of a wind generator while the auxiliary inverter is directly attached to a battery and a supercapacitor bank. The major issues with this approach are the dynamic changes in dc-link voltages and inevitable imbalances in the auxiliary inverter voltages, which results in unevenly distributed space vectors. A modified SVM technique is proposed to solve this issue. A PWM based time sharing method is proposed for power sharing between the battery and the supercapacitor. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques.
Resumo:
This paper presents a grid-side inverter based supercapacitor direct integration scheme for wind power systems. The inverter used in this study consists of a conventional two-level inverter and three H-bridge modules. Three supercapacitor banks are directly connected to the dc-links of H-bridge modules. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, for the maximum utilization of super capacitors their voltages should be allowed to vary. As a result of this variable voltage space vectors of the hybrid inverter get distributed unevenly. To handle this issue, a modified PWM method and a space vector modulation method are proposed and they can generate undistorted current even in the presence of unevenly distributed space vectors. A supercapacitor voltage balancing method is also presented in this paper. Simulation results are presented to validate the efficacy of the proposed scheme, modulation methods and control techniques.