400 resultados para Science and Technology System
Resumo:
Many modern business environments employ software to automate the delivery of workflows; whereas, workflow design and generation remains a laborious technical task for domain specialists. Several differ- ent approaches have been proposed for deriving workflow models. Some approaches rely on process data mining approaches, whereas others have proposed derivations of workflow models from operational struc- tures, domain specific knowledge or workflow model compositions from knowledge-bases. Many approaches draw on principles from automatic planning, but conceptual in context and lack mathematical justification. In this paper we present a mathematical framework for deducing tasks in workflow models from plans in mechanistic or strongly controlled work environments, with a focus around automatic plan generations. In addition, we prove an associative composition operator that permits crisp hierarchical task compositions for workflow models through a set of mathematical deduction rules. The result is a logical framework that can be used to prove tasks in workflow hierarchies from operational information about work processes and machine configurations in controlled or mechanistic work environments.
Resumo:
Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.
Resumo:
The existing Collaborative Filtering (CF) technique that has been widely applied by e-commerce sites requires a large amount of ratings data to make meaningful recommendations. It is not directly applicable for recommending products that are not frequently purchased by users, such as cars and houses, as it is difficult to collect rating data for such products from the users. Many of the e-commerce sites for infrequently purchased products are still using basic search-based techniques whereby the products that match with the attributes given in the target user's query are retrieved and recommended to the user. However, search-based recommenders cannot provide personalized recommendations. For different users, the recommendations will be the same if they provide the same query regardless of any difference in their online navigation behaviour. This paper proposes to integrate collaborative filtering and search-based techniques to provide personalized recommendations for infrequently purchased products. Two different techniques are proposed, namely CFRRobin and CFAg Query. Instead of using the target user's query to search for products as normal search based systems do, the CFRRobin technique uses the products in which the target user's neighbours have shown interest as queries to retrieve relevant products, and then recommends to the target user a list of products by merging and ranking the returned products using the Round Robin method. The CFAg Query technique uses the products that the user's neighbours have shown interest in to derive an aggregated query, which is then used to retrieve products to recommend to the target user. Experiments conducted on a real e-commerce dataset show that both the proposed techniques CFRRobin and CFAg Query perform better than the standard Collaborative Filtering (CF) and the Basic Search (BS) approaches, which are widely applied by the current e-commerce applications. The CFRRobin and CFAg Query approaches also outperform the e- isting query expansion (QE) technique that was proposed for recommending infrequently purchased products.
Resumo:
Purpose – To investigate and identify the patterns of interaction between searchers and search engine during web searching. Design/methodology/approach – The authors examined 2,465,145 interactions from 534,507 users of Dogpile.com submitted on May 6, 2005, and compared query reformulation patterns. They investigated the type of query modifications and query modification transitions within sessions. Findings – The paper identifies three strong query reformulation transition patterns: between specialization and generalization; between video and audio, and between content change and system assistance. In addition, the findings show that web and images content were the most popular media collections. Originality/value – This research sheds light on the more complex aspects of web searching involving query modifications.
Resumo:
Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study.
Resumo:
A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.
Resumo:
Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large amounts of money due to product recalls, consumer impact and subsequent loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and microorganisms to enter the package. In the food processing and packaging industry worldwide, there is an increasing demand for cost effective state of the art inspection technologies that are capable of reliably detecting leaky seals and delivering products at six-sigma. The new technology will develop non-destructive testing technology using digital imaging and sensing combined with a differential vacuum technique to assess seal integrity of food packages on a high-speed production line. The cost of leaky packages in Australian food industries is estimated close to AUD $35 Million per year. Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large sums of money due to product recalls, compensation claims and loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and micro-organisms to enter the package. Flexible plastic packages are widely used, and are the least expensive form of retaining the quality of the product. These packets can be used to seal, and therefore maximise, the shelf life of both dry and moist products. The seals of food packages need to be airtight so that the food content is not contaminated due to contact with microorganisms that enter as a result of air leakage. Airtight seals also extend the shelf life of packaged foods, and manufacturers attempt to prevent food products with leaky seals being sold to consumers. There are many current NDT (non-destructive testing) methods of testing the seal of flexible packages best suited to random sampling, and for laboratory purposes. The three most commonly used methods are vacuum/pressure decay, bubble test, and helium leak detection. Although these methods can detect very fine leaks, they are limited by their high processing time and are not viable in a production line. Two nondestructive in-line packaging inspection machines are currently available and are discussed in the literature review. The detailed design and development of the High-Speed Sensing and Detection System (HSDS) is the fundamental requirement of this project and the future prototype and production unit. Successful laboratory testing was completed and a methodical design procedure was needed for a successful concept. The Mechanical tests confirmed the vacuum hypothesis and seal integrity with good consistent results. Electrically, the testing also provided solid results to enable the researcher to move the project forward with a certain amount of confidence. The laboratory design testing allowed the researcher to confirm theoretical assumptions before moving into the detailed design phase. Discussion on the development of the alternative concepts in both mechanical and electrical disciplines enables the researcher to make an informed decision. Each major mechanical and electrical component is detailed through the research and design process. The design procedure methodically works through the various major functions both from a mechanical and electrical perspective. It opens up alternative ideas for the major components that although are sometimes not practical in this application, show that the researcher has exhausted all engineering and functionality thoughts. Further concepts were then designed and developed for the entire HSDS unit based on previous practice and theory. In the future, it would be envisaged that both the Prototype and Production version of the HSDS would utilise standard industry available components, manufactured and distributed locally. Future research and testing of the prototype unit could result in a successful trial unit being incorporated in a working food processing production environment. Recommendations and future works are discussed, along with options in other food processing and packaging disciplines, and other areas in the non-food processing industry.
Resumo:
Current research in secure messaging for Vehicular Ad hoc Networks (VANETs) appears to focus on employing a digital certificate-based Public Key Cryptosystem (PKC) to support security. The security overhead of such a scheme, however, creates a transmission delay and introduces a time-consuming verification process to VANET communications. This paper proposes a non-certificate-based public key management for VANETs. A comprehensive evaluation of performance and scalability of the proposed public key management regime is presented, which is compared to a certificate-based PKC by employing a number of quantified analyses and simulations. Not only does this paper demonstrate that the proposal can maintain security, but it also asserts that it can improve overall performance and scalability at a lower cost, compared to the certificate-based PKC. It is believed that the proposed scheme will add a new dimension to the key management and verification services for VANETs.
Resumo:
This study, investigating 263 women undergoing trans-vaginal oocyte retrieval for in vitro fertilisation (IVF) found that microorganisms colonising follicular fluid contributed to adverse IVF (pre-implantation) and pregnancy (post-implantation) outcomes including poor quality embryos, failed pregnancy and early pregnancy loss (< 37 weeks gestation). Some microorganisms also showed in vitro growth patterns in liquid media that appeared to be enhanced by the hormonal stimulation protocol used for oocyte retrieval. Elaborated cytokines within follicular fluid were also associated with adverse IVF outcomes. This study is imperative because infertility affects 16% of the human population and the numbers of couples needing assistance continues to increase. Despite significant improvements in the technical aspects of assisted reproductive technologies (ART), the live birth rate has not increased proportionally. Overt genital tract infection has been associated with both infertility and adverse pregnancy outcomes (including miscarriage and preterm birth) as a direct result of the infection or the host response to it. Importantly, once inflammation had become established, medical treatment often failed to prevent these significant adverse outcomes. Current evaluations of fertility focus on the ovary as a site of steroid hormone production and ovulation. However, infertility as a result of subclinical colonisation of the ovary has not been reported. Furthermore, identification of the microorganisms present in follicular fluid and the local cytokine profile may provide clinicians with an early indication of the prognosis for IVF treatment in infertile couples, thus allowing antimicrobial treatment and/or counselling about possible IVF failure. During an IVF cycle, multiple oocytes undergo maturation in vivo in response to hormonal hyperstimulation. Oocytes for in vitro insemination are collected trans-vaginally. The follicular fluid that bathes the maturing oocyte in vivo, usually is discarded as part of the IVF procedure, but provides a unique opportunity to investigate microbial causes of adverse IVF outcomes. Some previous studies have identified follicular fluid markers that predict IVF pregnancy outcomes. However, there have not been any detailed microbiological studies of follicular fluid. For this current study, paired follicular fluid and vaginal secretion samples were collected from women undergoing IVF cycles to determine whether microorganisms in follicular fluid were associated with adverse IVF outcomes. Microorganisms in follicular fluid were regarded as either "colonisers" or "contaminants"; colonisers, if they were unique to the follicular fluid sample, and contaminants if the same microorganisms were detected in the vaginal and follicular fluid samples indicating that the follicular fluid was merely contaminated during the oocyte retrieval process. Quite unexpectedly, by these criteria, we found that follicular fluid from approximately 30% of all subjects was colonised with bacteria. Fertile and infertile women with colonised follicular fluid had decreased embryo transfer rates and decreased pregnancy rates compared to women with contaminated follicular fluids. The observation that follicular fluid was not always sterile, but contained a diverse range of microorganisms, is novel. Many of the microorganisms we detected in follicular fluid are known opportunistic pathogens that have been detected in upper genital tract infections and are associated with adverse pregnancy outcomes. Bacteria were able to survive for at least 28 weeks in vitro, in cultures of follicular fluid. Within 10 days of establishing these in vitro cultures, several species (Lactobacillus spp., Bifidobacterium spp., Propionibacterium spp., Streptococcus spp. and Salmonella entericus) had formed biofilms. Biofilms play a major role in microbial pathogenicity and persistence. The propensity of microbial species to form biofilms in follicular fluid suggests that successful treatment of these infections with antimicrobials may be difficult. Bifidobacterium spp. grew, in liquid media, only if concentrations of oestradiol and progesterone were similar to those achieved in vivo during an IVF cycle. In contrast, the growth of Streptococcus agalactiae and Escherichia coli was inhibited or abolished by the addition of these hormones to culture medium. These data suggest that the likelihood of microorganisms colonising follicular fluid and the species of bacteria involved is influenced by the stage of the menstrual cycle and, in the case of IVF, the nature and dose of steroid hormones administered for the maturation of multiple oocytes in vivo. Our findings indicate that the elevated levels of steroid hormones during an IVF cycle may influence the microbial growth within follicular fluid, suggesting that the treatment itself will impact on the microflora present in the female upper genital tract during pre-conception and early post-conception phases of the cycle. The effect of the host immune response on colonising bacteria and on the outcomes of IVF also was investigated. White blood cells reportedly compose between 5% and 15% of the cell population in follicular fluid. The follicular membrane is semi-permeable and cells are actively recruited as part of the normal menstrual cycle and in response to microorganisms. A previous study investigated follicular fluid cytokines from infertile women and fertile oocyte donors undergoing IVF, and concluded that there were no significant differences in the cytokine concentrations between the two groups. However, other studies have reported differences in the follicular fluid cytokine levels associated with infertile women with endometriosis or polycystic ovary syndrome. In this study, elevated levels of interleukin (IL)-1 á, IL-1 â and vascular endothelial growth factor (VEGF) in vaginal fluid were associated with successful fertilisation, which may be useful marker for successful fertilisation outcomes for women trying to conceive naturally or prior to oocyte retrieval for IVF. Elevated levels of IL-6, IL-12p40, granulocyte colony stimulating factor (GCSF) and interferon-gamma (IFN ã) in follicular fluid were associated with successful embryo transfer. Elevated levels of pro-inflammatory IL-18 and decreased levels of anti-inflammatory IL-10 were identified in follicular fluid from women with idiopathic infertility. Successful fertilisation and implantation is dependent on a controlled pro-inflammatory environment, involving active recruitment of pro-inflammatory mediators to the genital tract as part of the menstrual cycle and early pregnancy. However, ongoing pregnancy requires an enhanced anti-inflammatory environment to ensure that the maternal immune system does not reject the semi-allergenic foetus. The pro-inflammatory skew in the follicular fluid of women with idiopathic infertility, correlates with normal rates of fertilisation, embryo discard and embryo transfer, observed for this cohort, which were similar to the outcomes observed for fertile women. However, their pregnancy rate was reduced compared to fertile women. An altered local immune response in follicular fluid may provide a means of explaining infertility in this cohort, previously defined as 'idiopathic'. This study has found that microorganisms colonising follicular fluid may have contributed to adverse IVF and pregnancy outcomes. Follicular fluid bathes the cumulus oocyte complex during the in vivo maturation process, and microorganisms in the fluid, their metabolic products or the local immune response to these microorganisms may result in damage to the oocytes, degradation of the cumulus or contamination of the IVF culture system. Previous studies that have discounted bacterial contamination of follicular fluid as a cause of adverse IVF outcomes failed to distinguish between bacteria that were introduced into the follicular fluid at the time of trans-vaginal oocyte retrieval and those that colonised the follicular fluid. Those bacteria that had colonised the fluid may have had time to form biofilms and to elicit a local immune response. Failure to draw this distinction has previously prevented consideration of bacterial colonisation of follicular fluid as a cause of adverse IVF outcomes. Several observations arising from this study are of significance to IVF programs. Follicular fluid is not always sterile and colonisation of follicular fluid is a cause of adverse IVF and pregnancy outcomes. Hormonal stimulation associated with IVF may influence whether follicular fluid is colonised and enhance the growth of specific species of bacteria within follicular fluid. Bacteria in follicular fluid may form biofilms and literature has reported that this may influence their susceptibility to antibiotics. Monitoring the levels of selected cytokines within vaginal secretions may inform fertilisation outcomes. This study has identified novel factors contributing to adverse IVF outcomes and that are most likely to affect also natural conception outcomes. Early intervention, possibly using antimicrobial or immunological therapies may reduce the need for ART and improve reproductive health outcomes for all women.
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.
Resumo:
This presentation provides a review of current civil unmanned aircraft system operations and applications, the operational environment and aviation safety regulations in Australia. A summary of current regulatory reform efforts is also provided. The presentation includes new and existing research programs established to address the technical and social issues facing the unmanned aircraft systems industry and aid the regulatory reform process.
Resumo:
Increasingly societies and their governments are facing important social issues that have science and technology as key features. A number of these socio-scientific issues have two features that distinguish them from the restricted contexts in which school science has traditionally been presented. Some of their science is uncertain and scientific knowledge is not the only knowledge involved. As a result, the concepts of uncertainty, risk and complexity become essential aspects of the science underlying these issues. In this chapter we discuss the nature and role of these concepts in the public understanding of science and consider their links with school science. We argue that these same concepts and their role in contemporary scientific knowledge need to be addressed in school science curricula. The new features for content, pedagogy and assessment of this urgent challenge for science educators are outlined. These will be essential if the goal of science education for citizenship is to be achieved with our students, who will increasingly be required to make personal and collective decisions on issues involving science and technology.
Resumo:
Construction is undoubtedly the most dangerous industry in Hong Kong, being responsible for 76 percent of all fatal accidents in industry in the region – around twenty times more than any other industry. In this paper, it is argued that while this rate can be largely reduced by improved production practices in isolation from the project’s physical design, there is some scope for the design team to contribute to site safety. A new safety assessment method, the Virtual Safety Assessment System (VSAS), is described which offers assistance. This involves individual construction workers being presented with 3D virtual risky scenarios of their project and a range of possible actions for selection. The method provides an analysis of results, including an assessment of the correctness or otherwise of the user’s selections, contributing to an iterative process of retraining and testing until a satisfactory level of knowledge and skill is achieved.
Resumo:
The future vehicle navigation for safety applications requires seamless positioning at the accuracy of sub-meter or better. However, standalone Global Positioning System (GPS) or Differential GPS (DGPS) suffer from solution outages while being used in restricted areas such as high-rise urban areas and tunnels due to the blockages of satellite signals. Smoothed DGPS can provide sub-meter positioning accuracy, but not the seamless requirement. A disadvantage of the traditional navigation aids such as Dead Reckoning and Inertial Measurement Unit onboard vehicles are either not accurate enough due to error accumulation or too expensive to be acceptable by the mass market vehicle users. One of the alternative technologies is to use the wireless infrastructure installed in roadside to locate vehicles in regions where the Global Navigation Satellite Systems (GNSS) signals are not available (for example: inside tunnels, urban canyons and large indoor car parks). The examples of roadside infrastructure which can be potentially used for positioning purposes could include Wireless Local Area Network (WLAN)/Wireless Personal Area Network (WPAN) based positioning systems, Ultra-wide band (UWB) based positioning systems, Dedicated Short Range Communication (DSRC) devices, Locata’s positioning technology, and accurate road surface height information over selected road segments such as tunnels. This research reviews and compares the possible wireless technologies that could possibly be installed along roadside for positioning purposes. Models and algorithms of integrating different positioning technologies are also presented. Various simulation schemes are designed to examine the performance benefits of united GNSS and roadside infrastructure for vehicle positioning. The results from these experimental studies have shown a number of useful findings. It is clear that in the open road environment where sufficient satellite signals can be obtained, the roadside wireless measurements contribute very little to the improvement of positioning accuracy at the sub-meter level, especially in the dual constellation cases. In the restricted outdoor environments where only a few GPS satellites, such as those with 45 elevations, can be received, the roadside distance measurements can help improve both positioning accuracy and availability to the sub-meter level. When the vehicle is travelling in tunnels with known heights of tunnel surfaces and roadside distance measurements, the sub-meter horizontal positioning accuracy is also achievable. Overall, simulation results have demonstrated that roadside infrastructure indeed has the potential to provide sub-meter vehicle position solutions for certain road safety applications if the properly deployed roadside measurements are obtainable.
Resumo:
A Multimodal Seaport Container Terminal (MSCT) is a complex system which requires careful planning and control in order to operate efficiently. It consists of a number of subsystems that require optimisation of the operations within them, as well as synchronisation of machines and containers between the various subsystems. Inefficiency in the terminal can delay ships from their scheduled timetables, as well as cause delays in delivering containers to their inland destinations, both of which can be very costly to their operators. The purpose of this PhD thesis is to use Operations Research methodologies to optimise and synchronise these subsystems as an integrated application. An initial model is developed for the overall MSCT; however, due to a large number of assumptions that had to be made, as well as other issues, it is found to be too inaccurate and infeasible for practical use. Instead, a method of developing models for each subsystem is proposed that then be integrated with each other. Mathematical models are developed for the Storage Area System (SAS) and Intra-terminal Transportation System (ITTS). The SAS deals with the movement and assignment of containers to stacks within the storage area, both when they arrive and when they are rehandled to retrieve containers below them. The ITTS deals with scheduling the movement of containers and machines between the storage areas and other sections of the terminal, such as the berth and road/rail terminals. Various constructive heuristics are explored and compared for these models to produce good initial solutions for large-sized problems, which are otherwise impractical to compute by exact methods. These initial solutions are further improved through the use of an innovative hyper-heuristic algorithm that integrates the SAS and ITTS solutions together and optimises them through meta-heuristic techniques. The method by which the two models can interact with each other as an integrated system will be discussed, as well as how this method can be extended to the other subsystems of the MSCT.