328 resultados para Real Projective Plane
Resumo:
The Bouncing Back research study, which began after the Queensland flooding in January 2011, has organically expanded through a number of architectural student design projects and exhibitions, which have sought to respond to catastrophic flooding events. In September 2011, 10 Queensland University of Technology architecture students travelled to Sydney to help construct a 1:1 true-to-life scale shelter, for the Emergency Shelter Exhibition at Customs House in Circular Quay. During the construction of the shelter, data were collected in situ, through dynamic interviews with the students. Using a grounded theory methodology, data were coded and then thematically analysed, to reveal three influential factors that positively impacted the students’ learning in this informal context. These were the student experience, the process of learning through physical making/fabrication, and development of empathy with the community. Analysis of these three factors demonstrated how this informal situated learning activity promoted vitally important learning in a real-world context, which is difficult to replicate in a physical on-campus environment.
Resumo:
Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress
Resumo:
Background Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. Methods Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. Results There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). Conclusion Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training.
Resumo:
This paper presents the development and experimental validation of a prototype system for online estimation and compensation of wind disturbances onboard small Rotorcraft unmanned aerial systems (RUAS). The proposed approach consists of integrating a small pitot-static system onboard the vehicle and using simple but effective algorithms for estimating the wind speed in real time. The baseline flight controller has been augmented with a feed-forward term to compensate for these wind disturbances, thereby improving the flight performance of small RUAS in windy conditions. The paper also investigates the use of online airspeed measurements in a closed-loop for controlling the RUAS forward motion without the aid of a global positioning system (GPS). The results of more than 80 flights with a RUAS confirm the validity of our approach.
Resumo:
This thesis has investigated how to cluster a large number of faces within a multi-media corpus in the presence of large session variation. Quality metrics are used to select the best faces to represent a sequence of faces; and session variation modelling improves clustering performance in the presence of wide variations across videos. Findings from this thesis contribute to improving the performance of both face verification systems and the fully automated clustering of faces from a large video corpus.
Resumo:
In-plane shear capacity formulation of reinforced masonry is commonly conceived as the sum of the capacities of three parameters, viz, the masonry, the reinforcement, and the precompression. The term “masonry” incorporates the aspect ratio of the wall without any regard to the aspect ratio of the panels inscribed (and hence confined) by the vertical and the horizontal reinforced grout cores. This paper proposes design expressions in which the aspect ratio of such panels is explicitly included. For this purpose, the grouted confining cores are regarded as a grid of confining elements within which the panels are positioned. These confined masonry panels are then considered as building blocks for multi-bay, multi-storied confined masonry shear walls and analyzed using an experimentally validated macroscopic finite-element model. Results of the analyzes of 161 confined masonry walls containing panels of height to length ratio less than 1.0 have been regressed to formulate design expressions. These expressions have been first validated using independent test data sets and then compared with the existing equations in some selected international design standards. The concept of including the unreinforced masonry panel aspect ratio as an additional term in the design expression for partially grouted/confined masonry shear walls is recommended based on the conclusions from this paper.
Resumo:
The new furnace at the Materials Characterization by X-ray Diffraction beamline at Elettra has been designed for powder diffraction measurements at high temperature (up to 1373 K at the present state). Around the measurement region the geometry of the radiative heating element assures a negligible temperature gradient along the capillary and can accommodate either powder samples in capillary or small flat samples. A double capillary holder allows flow-through of gas in the inner sample capillary while the outer one serves as the reaction chamber. The furnace is coupled to a translating curved imaging-plate detector, allowing the collection of diffraction patterns up to 2[theta] [asymptotically equal to] 130°.
Resumo:
This symposium describes what is possible when early childhood professionals work with designers to develop a vision for an exemplary early childhood centre with a focus on Education for Sustainability (EfS). The symposium provides insights into cross-disciplinary initiatives between QUT Early childhood and Design staff and students, who have worked together with the iconic Lone Pine Koala Sanctuary in Brisbane, to explore imperatives around EfS, including leadership and professionalism. This practical, real world project has seen all stakeholders engage in a focus on sustainability which has opened new ways of thinking about early childhood centre design. Cross-disciplinarity has created space to re-think the potential of the disciplines to interweave, and in so doing opened different ways for thinking about early childhood centres – their operation and their function. For the first time in Queensland, this project creates strategic alliances between EfS, childcare, business and sustainable design. EfS is essential for addressing local and global environmental issues and early childhood EfS research has been gaining international momentum, with governments nominating this area as having significant capacity to empower communities and promote change. While models for collaboration exist in the early childhood programs in Reggio Emilia, we offer sustainability as a unique and contemporary focus with immense potential to generate international and national interest. To date Early Childhood degree students enrolled in a leadership and management unit/subject have worked collaboratively with Design students to explore the sustainable design of the proposed Lone Pine early childhood centre. Providing students with a ‘real world’ project sees them re-positioned from ‘novice’ to ‘professional’, where their knowledge, expertise and perspectives are simultaneously validated and challenged. These learning experiences are enabling students to practice a new model of early childhood leadership, one that is vital for leading in an increasingly complex world. The symposium will be comprised of three discrete, though interconnected presentations, that work together to tell the story of this project. Three key facets of the project will be explored during the 90 minute session, as the perspectives of key stakeholders are shared. The first presentation (A/Prof Julie Davis, Dr Lyndal O’Gorman& Dr Megan Gibson) will outline the role of QUT School of Early Childhood staff and students, with attention to the ways in which the project was embedded in students’ work in the final year of their degree program of study. The second presentation (Ms Lindy Osborne) will provide insights into the Design students’ collaborative work in the project. Finally, the key role of the Lone Pine Koala Sanctuary and their commitment for EfS (Ms Peta Wilson & Dr Sue Elliott) will map out the philosophy that underpins the project. Together, the authors will conclude key project outcomes that have been achieved through this real-world, cross-disciplinary work.
Resumo:
Background Psychotic-like experiences (PLEs) are subclinical delusional ideas and perceptual disturbances that have been associated with a range of adverse mental health outcomes. This study reports a qualitative and quantitative analysis of the acceptability, usability and short term outcomes of Get Real, a web program for PLEs in young people. Methods Participants were twelve respondents to an online survey, who reported at least one PLE in the previous 3 months, and were currently distressed. Ratings of the program were collected after participants trialled it for a month. Individual semi-structured interviews then elicited qualitative feedback, which was analyzed using Consensual Qualitative Research (CQR) methodology. PLEs and distress were reassessed at 3 months post-baseline. Results User ratings supported the program's acceptability, usability and perceived utility. Significant reductions in the number, frequency and severity of PLE-related distress were found at 3 months follow-up. The CQR analysis identified four qualitative domains: initial and current understandings of PLEs, responses to the program, and context of its use. Initial understanding involved emotional reactions, avoidance or minimization, limited coping skills and non-psychotic attributions. After using the program, participants saw PLEs as normal and common, had greater self-awareness and understanding of stress, and reported increased capacity to cope and accept experiences. Positive responses to the program focused on its normalization of PLEs, usefulness of its strategies, self-monitoring of mood, and information putting PLEs into perspective. Some respondents wanted more specific and individualized information, thought the program would be more useful for other audiences, or doubted its effectiveness. The program was mostly used in low-stress situations. Conclusions The current study provided initial support for the acceptability, utility and positive short-term outcomes of Get Real. The program now requires efficacy testing in randomized controlled trials.
Resumo:
In 2008, a collaborative partnership between Google and academia launched the Google Online Marketing Challenge (hereinafter Google Challenge), perhaps the world’s largest in-class competition for higher education students. In just two years, almost 20,000 students from 58 countries participated in the Google Challenge. The Challenge gives undergraduate and graduate students hands-on experience with the world’s fastest growing advertising mechanism, search engine advertising. Funded by Google, students develop an advertising campaign for a small to medium sized enterprise and manage the campaign over three consecutive weeks using the Google AdWords platform. This article explores the Challenge as an innovative pedagogical tool for marketing educators. Based on the experiences of three instructors in Australia, Canada and the United States, this case study discusses the opportunities and challenges of integrating this dynamic problem-based learning approach into the classroom.
Resumo:
BACKGROUND OR CONTEXT Thermodynamics is a core concept for mechanical engineers yet notoriously difficult. Evidence suggests students struggle to understand and apply the core fundamental concepts of thermodynamics with analysis indicating a problem with student learning/engagement. A contributing factor is that thermodynamics is a ‘science involving concepts based on experiments’ (Mayhew 1990) with subject matter that cannot be completely defined a priori. To succeed, students must engage in a deep-holistic approach while taking ownership of their learning. The difficulty in achieving this often manifests itself in students ‘not getting’ the principles and declaring thermodynamics ‘hard’. PURPOSE OR GOAL Traditionally, students practice and “learn” the application of thermodynamics in their tutorials, however these do not consider prior conceptions (Holman & Pilling 2004). As ‘hands on’ learning is the desired outcome of tutorials it is pertinent to study methods of improving their efficacy. Within the Australian context, the format of thermodynamics tutorials has remained relatively unchanged over the decades, relying anecdotally on a primarily didactic pedagogical approach. Such approaches are not conducive to deep learning (Ramsden 2003) with students often disengaged from the learning process. Evidence suggests (Haglund & Jeppsson 2012), however, that a deeper level and ownership of learning can be achieved using a more constructivist approach for example through self generated analogies. This pilot study aimed to collect data to support the hypothesis that the ‘difficulty’ of thermodynamics is associated with the pedagogical approach of tutorials rather than actual difficulty in subject content or deficiency in students. APPROACH Successful application of thermodynamic principles requires solid knowledge of the core concepts. Typically, tutorial sessions guide students in this application. However, a lack of deep and comprehensive understanding can lead to student confusion in the applications resulting in the learning of the ‘process’ of application without understanding ‘why’. The aim of this study was to gain empirical data on student learning of both concepts and application, within thermodynamic tutorials. The approach taken for data collection and analysis was: - 1 Four concurrent tutorial streams were timetabled to examine student engagement/learning in traditional ‘didactic’ (3 weeks) and non-traditional (3 weeks). In each week, two of the selected four sessions were traditional and two non-traditional. This provided a control group for each week. - 2 The non-traditional tutorials involved activities designed to promote student-centered deep learning. Specific pedagogies employed were: self-generated analogies, constructivist, peer-to-peer learning, inquiry based learning, ownership of learning and active learning. - 3 After a three-week period, teaching styles of the selected groups was switched, to allow each group to experience both approaches with the same tutor. This also acted to mimimise any influence of tutor personality / style on the data. - 4 At the conclusion of the trial participants completed a ‘5 minute essay’ on how they liked the sessions, a small questionnaire, modelled on the modified (Christo & Hoang, 2013)SPQ designed by Biggs (1987) and a small formative quiz to gauge the level of learning achieved. DISCUSSION Preliminary results indicate that overall students respond positively to in class demonstrations (inquiry based learning), and active learning activities. Within the active learning exercises, the current data suggests students preferred individual rather than group or peer-to-peer activities. Preliminary results from the open-ended questions such as “What did you like most/least about this tutorial” and “do you have other comments on how this tutorial could better facilitate your learning”, however, indicated polarising views on the nontraditional tutorial. Some student’s responded that they really like the format and emphasis on understanding the concepts, while others were very vocal that that ‘hated’ the style and just wanted the solutions to be presented by the tutor. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION Preliminary results indicated a mixed, but overall positive response by students with more collaborative tutorials employing tasks promoting inquiry based, peer-to-peer, active, and ownership of learning activities. Preliminary results from student feedback supports evidence that students learn differently, and running tutorials focusing on only one pedagogical approached (typically didactic) may not be beneficial to all students. Further, preliminary data suggests that the learning / teaching style of both students and tutor are important to promoting deep learning in students. Data collection is still ongoing and scheduled for completion at the end of First Semester (Australian academic calendar). The final paper will examine in more detail the results and analysis of this project.
Resumo:
Real estate developers in China are using mergers and acquisitions (M&As) to ensure their survival and competitiveness. However, no suitable method is yet available to assess whether such M&As provide enhanced value for those involved. Using a hybrid method of data envelopment analysis (DEA) and Malmquist total factor productivity (TFP) indices, this paper evaluates the short and medium term effects of M&As on acquirers’ economic performance with a set of 32 M&A cases occurring during 2000–2011 in China. The results of the analysis show that M&As generally have a positive effect on acquirers’ economic performance. Acquisitions on average experienced a steady growth in developer Malmquist TFP, a more progressive adoption of technology immediately after acquisition, a slight short-term decrease in technical efficiency after acquisition but followed by a marked increase in the longer term once the integration and synergy benefits were realised. However, there is no evidence to show whether developers achieved any short or long term scale efficiency improvements after M&A. The findings of this study provide useful insights on developer M&A performance from an efficiency and productivity perspective.
Resumo:
Loading margin sensitivity (LMS) has been widely used in applications in the realm of voltage stability assessment and control. Typically, LMS is derived based on system equilibrium equations near bifurcation and therefore requires full detailed system model and significant computation effort. Availability of phasor measurement units (PMUs) due to the recent development of wide-area monitoring system (WAMS) provides an alternative computation-friendly approach for calculating LMS. With such motivation, this work proposes measurement-based wide-area loading margin sensitivity (WALMS) in bulk power systems. The proposed sensitivity, with its simplicity, has great potential to be embedded in real-time applications. Moreover, the calculation of the WALMS is not limited to low voltage near bifurcation point. A case study on IEEE 39-bus system verifies the proposed sensitivity. Finally, a voltage control scenario demonstrates the potential application of the WALMS.
Resumo:
Real-time locating systems (RTLSs) are considered an effective way to identify and track the location of an object in both indoor and outdoor environments. Various RTLSs have been developed and made commercially available in recent years. Research into RTLSs in the construction sector is ubiquitous and results have been published in many construction-related academic journals over the past decade. A succinct and systematic review of current applications would help academics, researchers and industry practitioners in identifying existing research deficiencies and therefore future research directions. However, such a review is lacking to date. This paper provides a framework for understanding RTLS research and development in the construction literature over the last decade. The research opportunities and directions of construction RTLS are highlighted. Background information relating to construction RTLS trends, accuracy, deployment, cost, purposes, advantages and limitations is provided. Four major research gaps are identified and research opportunities and directions are highlighted.
Resumo:
Out-of-plane behaviour of mortared and mortarless masonry walls with various forms of reinforcement, including unreinforced masonry as a base case is examined using a layered shell element based explicit finite element modelling method. Wall systems containing internal reinforcement, external surface reinforcement and intermittently laced reinforced concrete members and unreinforced masonry panels are considered. Masonry is modelled as a layer with macroscopic orthotropic properties; external reinforcing render, grout and reinforcing bars are modelled as distinct layers of the shell element. Predictions from the layered shell model have been validated using several out-of-plane experimental datasets reported in the literature. The model is used to examine the effectiveness of two retrofitting schemes for an unreinforced masonry wall.