406 resultados para Pedestrian vehicle interface.
Resumo:
The paper examines the knowledge of pedestrian movements, both in real scenarios, and from more recent years, in the virtual 4 simulation realm. Aiming to verify whether it is possible to learn from the study of virtual environments how people will behave in real 5 environments, it is vital to understand what is already known about behavior in real environments. Besides the walking interaction among 6 pedestrians, the interaction between pedestrians and the built environment in which they are walking also have greatest relevance. Force-based 7 models were compared with the other three major microscopic models of pedestrian simulation to demonstrate a more realistic and capable 8 heuristic approach is needed for the study of the dynamics of pedestrians.
Resumo:
Analysis of the particulate size and number concentration emissions from a fleet of inner city medium duty CNG buses was conducted using the newly available Diffusion Size Classifier in comparison with more traditional SMPS's and CPC's. Studies were conducted at both steady state and transient driving modes on a vehicle dynamometer utilising a CVS dilution system. Comparative analysis of the results showed that the DiSC provided equivalent information during steady state conditions and was able to provide additional information during transient conditions, namely, the modal diameter of the particle size distribution.
Resumo:
Service mismatches involve the adaptation of structural and behavioural interfaces of services, which in practice incurs long lead times through manual, coding e ort. We propose a framework, complementary to conventional service adaptation, to extract comprehensive and seman- tically normalised service interfaces, useful for interoperability in large business networks and the Internet of Services. The framework supports introspection and analysis of large and overloaded operational signa- tures to derive focal artefacts, namely the underlying business objects of services. A more simpli ed and comprehensive service interface layer is created based on these, and rendered into semantically normalised in- terfaces, given an ontology accrued through the framework from service analysis history. This opens up the prospect of supporting capability comparisons across services, and run-time request backtracking and ad- justment, as consumers discover new features of a service's operations through corresponding features of similar services. This paper provides a rst exposition of the service interface synthesis framework, describing patterns having novel requirements for unilateral service adaptation, and algorithms for interface introspection and business object alignment. A prototype implementation and analysis of web services drawn from com- mercial logistic systems are used to validate the algorithms and identify open challenges and future research directions.
Resumo:
Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.
Resumo:
This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.
Resumo:
A novel replaceable, modularized energy storage system with wireless interface is proposed for a battery operated electric vehicle (EV). The operation of the proposed system is explained and analyzed with an equivalent circuit and an averaged state-space model. A non-linear feedback linearization based controller is developed and implemented to regulate the DC link voltage by modulating the phase shift ratio. The working and control of the proposed system is verified through simulation and some preliminary results are presented.
Resumo:
The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.
Resumo:
Additional converters that are used to interface energy storage devices incur power losses as well as increased system cost and complexity. The need for additional converters can be eliminated if the grid side inverter can itself be effectively used as the interface for energy storage. This paper therefore proposes a technique whereby the grid side inverter can also be used as an interface to connect a supercapacitor energy storage for wind energy conversion systems. The proposed grid side inverter is formed by cascading a 3-level inverter and a 2-level inverter through a coupling transformer. The three-level inverter is the main inverter and it is powered by the rectified output of the wind turbine coupled AC generator while the 2-level auxiliary inverter is connected to the super capacitor bank that is used to compensate short term power fluctuations. Novel modulation and control techniques are proposed to address the problems associated with non-integer and dynamically-changing dc-link voltage ratio, which is caused by the random nature of wind. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.
Resumo:
This paper presents a novel concept of Energy Storage System (ESS) interfacing with the grid side inverter in wind energy conversion systems. The inverter system used here is formed by cascading a 2-level inverter and a three level inverter through a coupling transformer. The constituent inverters are named as the “main inverter” and the “auxiliary inverter” respectively. The main inverter is connected with the rectified output of the wind generator while the auxiliary inverter is attached to a Battery Energy Storage System (BESS). The BESS ensures constant power dispatch to the grid irrespective of change in wind condition. Furthermore, this unique combination of BESS and inverter eliminates the need of additional dc-dc converters. Novel modulation and control techniques are proposed to address the problem of non-integer, dynamically-changing dc-link voltage ratio, which is due to random wind changes. Strategies used to handle auxiliary inverter dc-link voltage imbalances and controllers used to charge batteries at different rates are explained in detail. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques in suppressing random wind power fluctuations.
Resumo:
The primary motivation for the vehicle replacement schemes that were implemented in many countries was to encourage the purchase of new cars. The basic assumption of these schemes was that these acquisitions would benefit both the economy and the environment as older and less fuel-efficient cars were scrapped and replaced with more fuel-efficient models. In this article, we present a new environmental impact assessment method for assessing the effectiveness of scrappage schemes for reducing CO2 emissions taking into account the rebound effect, driving behavior for older versus new cars and entire lifecycle emissions for during the manufacturing processes of new cars. The assessment of the Japanese scrappage scheme shows that CO2 emissions would only decrease if users of the scheme retained their new gasoline passenger vehicles for at least 4.7 years. When vehicle replacements were restricted to hybrid cars, the reduction in CO2 achieved by the scheme would be 6-8.5 times higher than the emissions resulting from a scheme involving standard, gasoline passenger vehicles. Cost-benefit analysis, based on the emission reduction potential, showed that the scheme was very costly. Sensitivity analysis showed that the Japanese government failed to determine the optimum, or target, car age for scrapping old cars in the scheme. Specifically, scrapping cars aged 13 years and over did not maximize the environmental benefits of the scheme. Consequently, modifying this policy to include a reduction in new car subsidies, focused funding for fuel-efficient cars, and modifying the target car age, would increase environmental benefits. © 2013 Elsevier Ltd.
Resumo:
This paper tested the effects of the 2005 vehicle emission-control law issued in Japan on the market linkages between the U.S. and Japanese palladium futures markets, To determine these effects, we applied a cointegration test both with and without break points in the time series and found that the market linkages between the two countries changed after the break in October 2005. Our results show that the 2005 long-term regulation of vehicle emissions enacted in Japan influenced the international palladium futures market.
Resumo:
A Z-source inverter based grid-interface for a variable-speed wind turbine connected to a permanent magnet synchronous generator is proposed. A control system is designed to harvest maximum wind energy under varied wind conditions with the use of the permanent magnet synchronous generator, diode-rectifier and Z-source inverter. Control systems for speed regulation of the generator and for DC- and AC- sides of the Z-source inverter are investigated using computer simulations and laboratory experiments. Simulation and experimental results verify the efficacy of the proposed approach.
Resumo:
Braking is a crucial driving task with a direct relationship with crash risk, as both excess and inadequate braking can lead to collisions. The objective of this study was to compare the braking profile of young drivers distracted by mobile phone conversations to non-distracted braking. In particular, the braking behaviour of drivers in response to a pedestrian entering a zebra crossing was examined using the CARRS-Q Advanced Driving Simulator. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free, and handheld. In addition to driving the simulator, each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The drivers were 18–26 years old and split evenly by gender. A linear mixed model analysis of braking profiles along the roadway before the pedestrian crossing revealed comparatively increased decelerations among distracted drivers, particularly during the initial 20 kph of deceleration. Drivers’ initial 20 kph deceleration time was modelled using a parametric accelerated failure time (AFT) hazard-based duration model with a Weibull distribution with clustered heterogeneity to account for the repeated measures experiment design. Factors found to significantly influence the braking task included vehicle dynamics variables like initial speed and maximum deceleration, phone condition, and driver-specific variables such as licence type, crash involvement history, and self-reported experience of using a mobile phone whilst driving. Distracted drivers on average appear to reduce the speed of their vehicle faster and more abruptly than non-distracted drivers, exhibiting excess braking comparatively and revealing perhaps risk compensation. The braking appears to be more aggressive for distracted drivers with provisional licenses compared to drivers with open licenses. Abrupt or excessive braking by distracted drivers might pose significant safety concerns to following vehicles in a traffic stream.
Resumo:
A nonlinear interface element modelling method is formulated for the prediction of deformation and failure of high adhesive thin layer polymer mortared masonry exhibiting failure of units and mortar. Plastic flow vectors are explicitly integrated within the implicit finite element framework instead of relying on predictor–corrector like approaches. The method is calibrated using experimental data from uniaxial compression, shear triplet and flexural beam tests. The model is validated using a thin layer mortared masonry shear wall, whose experimental datasets are reported in the literature and is used to examine the behaviour of thin layer mortared masonry under biaxial loading.
Resumo:
A significant proportion of worker fatalities within Australia result from truck-related incidents. Truck drivers face a number of health and safety concerns. Safety culture, viewed here as the beliefs, attitudes and values shared by an organisation’s workers, which interact with their surrounding context to influence behaviour, may provide a valuable lens for exploring safety-related behaviours in heavy vehicle operations. To date no major research has examined safety culture within heavy vehicle industries. As safety culture provides a means to interpret experiences and generate behaviour, safety culture research should be conducted with an awareness of the context surrounding safety. The current research sought to examine previous health and safety research regarding heavy vehicle operations to profile contextual factors which influence health and safety. A review of 104 peer-reviewed papers was conducted. Findings of these papers were then thematically analysed. A number of behaviours and scenarios linked with crashes and non-crash injuries were identified, along with a selection of health outcomes. Contextual factors which were found to influence these outcomes were explored. These factors were found to originate from government departments, transport organisations, customers and the road and work environment. The identified factors may provide points of interaction, whereby culture may influence health and safety outcomes.