365 resultados para PAX-9 gene
Resumo:
The genetic basis of primary hypertension is not known. Renin is important in blood pressure and volume control and a HindIII restriction fragment length polymorphism (RFLP) is present within the human renin gene locus. To examine whether there is a relationship between this RFLP and primary hypertension, DNA and renin analyses were performed on leukocytes and plasma from hypertensive and normotensive individuals. In hypertensives the frequencies of alleles for the HindIII RFLP were found to be 0.55 and 0.45, compared with 0.60 and 0.40 in the total population of 231 subjects examined, a difference that was not statistically significant. There also appeared to be no significant difference in renin activity in plasma for hypertensive patients of each genotype, nor in their pre- or post-treatment blood pressures. We thus conclude that, within the limits of the present study, the suspected genetic abnormalities associated with primary hypertension in man do not appear to be related to a HindIII RFLP in the renin gene.
Resumo:
BACKGROUND: Oestrogen receptor 1 ( ESR1) is located in region 6q25.1 and encodes a ligand-activated transcription factor composed of several domains important for hormone binding and transcription activation. Progesterone receptor ( PGR) is located in 11q22-23 and mediates the role of progesterone interacting with different transcriptional co-regulators. ESR1 and PGR have previously been implicated in migraine susceptibility. Here, we report the results of an association study of these genes in a migraine pedigree from the genetic isolate of Norfolk Island, a population descended from a small number of Isle of Man "Bounty Mutineer" and Tahitian founders.
Resumo:
Background/Aim: Since microRNAs (miRNAs) act as translational regulators of multiple genes, single nucleotide polymorphisms (SNP) in them can have potentially wide-ranging effects. Using an association approach, this research examined the effects of the rs6505162 SNP, an A>C polymorphism located in the premiRNA region of miR-423, on breast cancer development. Materials and Methods: Caucasian Australian women with breast cancer and controls matched for age and ethnicity were genotyped for rs6505162 and their genotypic and allelic frequencies analysed for significant differences. Results: Analysis indicated that there were significant differences between the case and control populations (χ 2=6.70, p=0.035), with the CC genotype conferring reduced risk of breast cancer development (odds ratio=0.50 95% confidence interval=0.27-0.92, p=0.03). Conclusion: Further functional research is required to determine the mechanism of action of this SNP on miRNA function.
Resumo:
Insulin has cardiovascular actions and patients with essential hypertension display insulin resistance. A cross-sectional study of the R1 RFLP of the insulin receptor gene (INSR) was carried out in 67 hypertensive (HT) and 75 normotensive (NT) subjects whose parents had a similar blood pressure status at age ≥50. The frequency of the minor (+) allele was 0.31 in HTs and 0.44 in NTs, and the difference between observed alleles in all subjects in each group was significant (χ2 = 4.8, P<0.05). Allele frequencies of a BglI RFLP of the insulin gene, however, did not differ between the HT and NT groups. The data thus provide evidence in favour of an association of HT with a polymorphism at the INSR locus (19p 13.3-13.2), so implicating this locus, and possibly a genetic variant of the insulin receptor itself, in HT.
Resumo:
The present study examined polymorphisms of genes that might be involved in the onset of essential hypertension (HT). These included the (i) growth hormone gene (GH1), whose locus has recently been linked to elevated blood pressure (BP) in the stroke-prone SHR, although recent sib-pair analysis of a polymorphism near the human chorionic somatomammotropin gene (a member of the GH cluster) was unable to show linkage with HT; (ii) renal kallikrein gene (KLK1); and (iii) atrial natriuretic factor gene (ANF), where a primary defect in production or activity of kallikrein or ANF could cause NaCl retention and vasoconstriction. Association analyses were conducted to compare restriction fragment length polymorphisms (RFLPs) of each gene in 85 HT and 95 normotensive (NT) Caucasian subjects whose parents had a similar BP status at age ≥50 years. The frequency of the minor allele of (i) a RsaI RFLP in the promoter of GH1, amplified from leukocyte DNA by the polymerase chain reaction, was 0.15 in the HT group and 0.14 in the NT group (χ1=0.34, P=0.55); (ii) a TaqI RFLP for KLK1 was 0.035 in the HT group and 0.015 in the NT group (χ2=1.5, P=0.21); and (iii) a XhoI RFLP for ANF was 0.50 in HTs and 0.46 in NTs (χ2=0.20, P=0.65). Studies of HT pedigrees found one family in which the ANF locus and HT were not linked, owing to an obligate recombinant. The present data thus provide no evidence for involvement of the growth hormone, renal kallikrein, nor ANF gene in the causation of essential hypertension.
Resumo:
Obese (BMI ≥ 26 kg/m 2; n = 51) and lean (BMI <26 kg/m 2; n = 61) Caucasian patients with severe, familial essential hypertension, were compared with respect to genotype and allele frequencies of a HincII RFLP of the low density lipoprotein receptor gene (LDLR). A similar analysis was performed in obese (n = 28) and lean (n = 68) normotensives. A significant association of the C allele of the T→C variant responsible for this RFLP was seen with obesity (χ 2 = 4.6, P = 0.029) in the hypertensive, but not in the normotensive, group (odds ratio = 3.0 for the CC genotype and 2.7 for CT). Furthermore, BMI tracked with genotypes of this allele in the hypertensives (P = 0.046). No significant genotypic relationship was apparent for plasma lipids. Significant linkage disequilibrium was, moreover, noted between the HincII RFLP and an ApaLI RFLP (χ 2 = 33, P<0.0005) that has previously shown even stronger association with obesity (odds ratio 19.6 for cases homozygous for the susceptibility allele and 15.2 for het-erozygotes). The present study therefore adds to our previous evidence implicating LDLR as a locus for obesity in patients with essential hypertension.
Resumo:
Essential hypertension is a highly hereditable disorder in which genetic influences predominate over environmental factors. The molecular genetic profiles which predispose to essential hypertension are not known. In rats with genetic hypertension, there is some recent evidence pointing to linkage of renin gene alleles with blood pressure. The genes for renin and antithrombin III belong to a conserved synteny group which, in humans, spans the q21.3-32.3 region of chromosome I and, in rats, is linkage group X on chromosome 13. The present study examined the association of particular human renin gene (REN) and antithrombin III gene (AT3) polymorphisms with essential hypertension by comparing the frequency of specific alleles for each of these genes in 50 hypertensive offspring of hypertensive parents and 91 normotensive offspring of normotensive parents. In addition, linkage relationships were examined in hypertensive pedigrees with multiple affected individuals. Alleles of a REN HindIII restriction fragment length polymorphism (RFLP) were detected using a genomic clone, λHR5, to probe Southern blots of HindIII-cut leucocyte DNA, and those for an AT3 Pstl RFLP were detected by phATIII 113 complementary DNA probe. The frequencies of each REN allele in the hypertensive group were 0.76 and 0.24 compared with 0.74 and 0.26 in the normotensive group. For AT3, hypertensive allele frequencies were 0.49 and 0.51 compared with normotensive values of 0.54 and 0.46. These differences were not significant by χ2 analysis (P > 0.2). Linkage analysis of a family (data from 16 family members, 10 of whom were hypertensive), informative for both markers, without an age-of-onset correction, and assuming dominant inheritance of hypertension, complete penetrance and a disease frequency of 20%, did not indicate linkage of REN with hypertension, but gave a positive, although not significant, logarithm of the odds for linkage score of 0.784 at a recombination fraction of 0 for AT3 linkage to hypertension. In conclusion, the present study could find no evidence for an association of a REN HindIII RFLP with essential hypertension or for a linkage of the locus defined by this RFLP in a family segregating for hypertension. In the case of an AT3 Pstl RFLP, although association analysis was negative, linkage analysis suggested possible involvement (odds of 6:1 in favour) of a gene located near the 1q23 locus with hypertension in one informative family.
Resumo:
Migraine is a debilitating neurological disorder characterized by recurrent attacks of severe headache. The disorder is highly prevalent, affecting approximately 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the type and number of genes involved is not yet clear. However, the calcium channel gene, CACNA1A, on chromosome 19 contains mutations responsible for familial hemiplegic migraine, a rare and severe subtype of migraine. There is also evidence to suggest that serotonin- and dopamine-related genes may be involved in the pathogenesis of migraine. This study employed a linkage and association approach to investigate neurotransmitter-related migraine candidate genes. Polymorphisms within the dopamine beta-hydroxylase (DBH) gene, serotonin transporter gene (SERT), and dopamine receptor gene (DRD2) were tested in 177 unrelated Caucasian migraineurs and 182 control individuals. In addition, an independent sample of 82 families affected with migraine was examined. Unrelated case-control association analysis of a DBH intragenic dinucleotide polymorphism indicated altered allelic distribution between migraine and control groups (L2=16.53, P=0.019). Furthermore, the transmission/disequilibrium test, which was implemented on the family data, also indicated distortion of allele transmission for the same DBH marker (L2=4.44, P=0.035). Together, these results provide evidence for allelic association of the DBH gene with typical migraine susceptibility (Fisher's combined P value=0.006) and indicate that further research into the role of the DBH gene in the etiology of migraine is warranted.
Resumo:
The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.
Resumo:
The most integrated approach toward understanding the multiple molecular events and mechanisms by which cancer may develop is the application of gene expression profiling using microarray technologies. As molecular alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple samples in a high throughput manner. Since the development of microarray technologies, together with the advances in RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, their limitations, clinical implications including prognostic relevance and gene signature significance along with potential improvements for the next generation of microarray studies.
Resumo:
Endometrial cancer is one of the most common female diseases in developed nations and is the most commonly diagnosed gynaecological cancer in Australia. The disease is commonly classified by histology: endometrioid or non-endometrioid endometrial cancer. While non-endometrioid endometrial cancers are accepted to be high-grade, aggressive cancers, endometrioid cancers (comprising 80% of all endometrial cancers diagnosed) generally carry a favourable patient prognosis. However, endometrioid endometrial cancer patients endure significant morbidity due to surgery and radiotherapy used for disease treatment, and patients with recurrent disease have a 5-year survival rate of less than 50%. Genetic analysis of women with endometrial cancer could uncover novel markers associated with disease risk and/or prognosis, which could then be used to identify women at high risk and for the use of specialised treatments. Proteases are widely accepted to play an important role in the development and progression of cancer. This PhD project hypothesised that SNPs from two protease gene families, the matrix metalloproteases (MMPs, including their tissue inhibitors, TIMPs) and the tissue kallikrein-related peptidases (KLKs) would be associated with endometrial cancer susceptibility and/or prognosis. In the first part of this study, optimisation of the genotyping techniques was performed. Results from previously published endometrial cancer genetic association studies were attempted to be validated in a large, multicentre replication set (maximum cases n = 2,888, controls n = 4,483, 3 studies). The rs11224561 progesterone receptor SNP (PGR, A/G) was observed to be associated with increased endometrial cancer risk (per A allele OR 1.31, 95% CI 1.12-1.53; p-trend = 0.001), a result which was initially reported among a Chinese sample set. Previously reported associations for the remaining 8 SNPs investigated for this section of the PhD study were not confirmed, thereby reinforcing the importance of validation of genetic association studies. To examine the effect of SNPs from the MMP and KLK families on endometrial cancer risk, we selected the most significantly associated MMP and KLK SNPs from genome-wide association study analysis (GWAS) to be genotyped in the GWAS replication set (cases n = 4,725, controls n = 9,803, 13 studies). The significance of the MMP24 rs932562 SNP was unchanged after incorporation of the stage 2 samples (Stage 1 per allele OR 1.18, p = 0.002; Combined Stage 1 and 2 OR 1.09, p = 0.002). The rs10426 SNP, located 3' to KLK10 was predicted by bioinformatic analysis to effect miRNA binding. This SNP was observed in the GWAS stage 1 result to exhibit a recessive effect on endometrial cancer risk, a result which was not validated in the stage 2 sample set (Stage 1 OR 1.44, p = 0.007; Combined Stage 1 and 2 OR 1.14, p = 0.08). Investigation of the regions imputed surrounding the MMP, TIMP and KLK genes did not reveal any significant targets for further analysis. Analysis of the case data from the endometrial cancer GWAS to identify genetic variation associated with cancer grade did not reveal SNPs from the MMP, TIMP or KLK genes to be statistically significant. However, the representation of SNPs from the MMP, TIMP and KLK families by the GWAS genotyping platform used in this PhD project was examined and observed to be very low, with the genetic variation of four genes (MMP23A, MMP23B, MMP28 and TIMP1) not captured at all by this technique. This suggests that comprehensive candidate gene association studies will be required to assess the role of SNPs from these genes with endometrial cancer risk and prognosis. Meta-analysis of gene expression microarray datasets curated as part of this PhD study identified a number of MMP, TIMP and KLK genes to display differential expression by endometrial cancer status (MMP2, MMP10, MMP11, MMP13, MMP19, MMP25 and KLK1) and histology (MMP2, MMP11, MMP12, MMP26, MMP28, TIMP2, TIMP3, KLK6, KLK7, KLK11 and KLK12). In light of these findings these genes should be prioritised for future targeted genetic association studies. Two SNPs located 43.5 Mb apart on chromosome 15 were observed from the GWAS analysis to be associated with increased endometrial cancer grade, results that were validated in silico in two independent datasets. One of these SNPs, rs8035725 is located in the 5' untranslated region of a MYC promoter binding protein DENND4A (Stage 1 OR 1.15, p = 9.85 x 10P -5 P, combined Stage 1 and in silico validation OR 1.13, p = 5.24 x 10P -6 P). This SNP has previously been reported to alter the expression of PTPLAD1, a gene involved in the synthesis of very long fatty acid chains and in the Rac1 signaling pathway. Meta-analysis of gene expression microarray data found PTPLAD1 to display increased expression in the aggressive non-endometrioid histology compared with endometrioid endometrial cancer, suggesting that the causal SNP underlying the observed genetic association may influence expression of this gene. Neither rs8035725 nor significant SNPs identified by imputation were predicted bioinformatically to affect transcription factor binding sites, indicating that further studies are required to assess their potential effect on other regulatory elements. The other grade- associated SNP, rs6606792, is located upstream of an inferred pseudogene, ELMO2P1 (Stage 1 OR 1.12, p = 5 x 10P -5 P; combined Stage 1 and in silico validation OR 1.09, p = 3.56 x 10P -5 P). Imputation of the ±1 Mb region surrounding this SNP revealed a cluster of significantly associated variants which are predicted to abolish various transcription factor binding sites, and would be expected to decrease gene expression. ELMO2P1 was not included on the microarray platforms collected for this PhD, and so its expression could not be investigated. However, the high sequence homology of ELMO2P1 with ELMO2, a gene important to cell motility, indicates that ELMO2 could be the parent gene for ELMO2P1 and as such, ELMO2P1 could function to regulate the expression of ELMO2. Increased expression of ELMO2 was seen to be associated with increasing endometrial cancer grade, as well as with aggressive endometrial cancer histological subtypes by microarray meta-analysis. Thus, it is hypothesised that SNPs in linkage disequilibrium with rs6606792 decrease the transcription of ELMO2P1, reducing the regulatory effect of ELMO2P1 on ELMO2 expression. Consequently, ELMO2 expression is increased, cell motility is enhanced leading to an aggressive endometrial cancer phenotype. In summary, these findings have identified several areas of research for further study. The results presented in this thesis provide evidence that a SNP in PGR is associated with risk of developing endometrial cancer. This PhD study also reports two independent loci on chromosome 15 to be associated with increased endometrial cancer grade, and furthermore, genes associated with these SNPs to be differentially expressed according in aggressive subtypes and/or by grade. The studies reported in this thesis support the need for comprehensive SNP association studies on prioritised MMP, TIMP and KLK genes in large sample sets. Until these studies are performed, the role of MMP, TIMP and KLK genetic variation remains unclear. Overall, this PhD study has contributed to the understanding of genetic variation involvement in endometrial cancer susceptibility and prognosis. Importantly, the genetic regions highlighted in this study could lead to the identification of novel gene targets to better understand the biology of endometrial cancer and also aid in the development of therapeutics directed at treating this disease.
Resumo:
Background Migraine is a debilitating neurological disorder affecting approximately 12% of the Caucasian population. There are two main sub-types of migraine, migraine without aura (MO) and migraine with aura (MA). Migraine exhibits varied phenotypic expression with sufferers experiencing a range of neurological and other symptoms. It is likely that multiple susceptibility genes play a role in this varied phenotypic expression, thus investigation of genotype-phenotype relationships may provide valuable insights into the role of susceptibility genes in this disorder. Methods This study investigated the links between migraine susceptibility genes, methylenetetrahydrofolate reductase (MTHFR) and angiotensin converting enzyme (ACE), and clinical manifestation through statistical analyses. Results The result showed that for the MTHFR genotypes, there was a statistically significant correlation with the TT homozygous genotype and visual disturbances, unilateral head pain and physical activity discomforts. It was also found that bilateral head pain was associated with the male gender. Conclusion From these study results, it is plausible to state that MTHFR genotypes affect the phenotypic expression of migraine disease manifestation.
Resumo:
Abstract: Monoamine Oxidase (MAO) enzymes catabolise, and thus modulate abundance of, neurotransmitters in the brain. Variation in MAO enzyme activity has been linked to alcohol abuse behaviour, although the molecular mechanisms underlying this association are not understood. The present study evaluated relative gene-transcript abundance of MAO-A and MAO-B in the SH-SY5Y human neuroblastoma cell-line in response to ethanol exposure and following ethanol withdrawal. We found that each isoform of MAO was significantly transcriptionally up-regulated 55-80% in response to 100mM ethanol exposure. This trend was maintained following prolonged exposures (24 h-72 h) and with short exposures (24 h) followed by a period of ethanol withdrawal, suggesting that the transcriptional regulation is the result of a cellular change occurring within the first 24 hours of ethanol exposure. These results suggest a role for MAO transcriptional regulation in the complex neurobiochemical changes underlying alcohol addiction.
Resumo:
High density SNP arrays can be used to identify DNA copy number changes in tumors such as homozygous deletions of tumor suppressor genes and focal amplifications of oncogenes. Illumina Human CNV370 Bead chip arrays were used to assess the genome for unbalanced chromosomal events occurring in 39 cell lines derived from stage III metastatic melanomas. A number of genes previously recognized to have an important role in the development and progression of melanoma were identified including homozygous deletions of CDKN2A (13 of 39 samples), CDKN2B (10 of 39), PTEN (3 of 39), PTPRD (3 of 39), TP53 (1 of 39), and amplifications of CCND1 (2 of 39), MITF (2 of 39), MDM2 (1 of 39), and NRAS (1 of 39). In addition, a number of focal homozygous deletions potentially targeting novel melanoma tumor suppressor genes were identified. Because of their likely functional significance for melanoma progression, FAS, CH25H, BMPR1A, ACTA2, and TFG were investigated in a larger cohort of melanomas through sequencing. Nonsynonymous mutations were identified in BMPR1A (1 of 43), ACTA2 (3 of 43), and TFG (5 of 103). A number of potentially important mutation events occurred in TFG including the identification of a mini mutation ‘‘hotspot’’ at amino acid residue 380 (P380S and P380L) and the presence of multiple mutations in two melanomas. Mutations in TFG may have important clinical relevance for current therapeutic strategies to treat metastatic melanoma.
Resumo:
The candidate gene approach has been a pioneer in the field of genetic epidemiology, identifying risk alleles and their association with clinical traits. With the advent of rapidly changing technology, there has been an explosion of in silico tools available to researchers, giving them fast, efficient resources and reliable strategies important to find casual gene variants for candidate or genome wide association studies (GWAS). In this review, following a description of candidate gene prioritisation, we summarise the approaches to single nucleotide polymorphism (SNP) prioritisation and discuss the tools available to assess functional relevance of the risk variant with consideration to its genomic location. The strategy and the tools discussed are applicable to any study investigating genetic risk factors associated with a particular disease. Some of the tools are also applicable for the functional validation of variants relevant to the era of GWAS and next generation sequencing (NGS).