405 resultados para Open space residential design (OSRD)
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
This research has established a new privacy framework, privacy model, and privacy architecture to create more transparent privacy for social networking users. The architecture is designed into three levels: Business, Data, and Technology, which is based on The Open Group Architecture Framework (TOGAF®). This framework and architecture provides a novel platform for investigating privacy in Social Networks (SNs). This approach mitigates many current SN privacy issues, and leads to a more controlled form of privacy assessment. Ultimately, more privacy will encourage more connections between people across SN services.
Resumo:
Light gauge steel roofing systems made of thin profiled roof sheeting and battens are used commonly in residential, industrial and commercial buildings. Their critical design load combination is that due to wind uplift forces that occur during high wind events such as tropical cyclones and thunderstorms. However, premature local failures at their screw connections have been a concern for many decades since cyclone Tracy that devastated Darwin in 1974. Extensive research that followed cyclone Tracy on the pull-through and pull-out failures of roof sheeting to batten connections has significantly improved the safety of roof sheeting. However, this has made the batten to rafter/truss connection the weakest, and recent wind damage investigations have shown the failures of these connections and the resulting loss of entire roof structures. Therefore an experimental research program using both small scale and full scale air-box tests is currently under way to investigate the pull-through failures of thin-walled steel battens under high wind uplift forces. Tests have demonstrated that occurrence of pull-through failures in the bottom flanges of steel batttens and the need to develop simple test and design methods as a function of many critical parameters such as steel batten geometry, thickness and grade, screw fastener sizes and other fastening details. This paper presents the details of local failures that occur in light fauge roofing systems, a review of the current design and test methods for steel battens and associated short comings, and the test results obtained to date on pull-through failures of battens from small scale and full scale tests. Finally, it proposes the use of suitable small scale test methods that can be used by both researchers and manufacturers of such screw-fastened light gauge steel batten systems.
Resumo:
Bit-stream-based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. This study presents a novel family of three-phase space vector modulators, which are based on the bit-stream technique and suitable for three-phase inverter systems. Each of the proposed modulators simultaneously converts a two-phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulators do not require carrier oscillators, trigonometric functions or, in some cases, sector detectors. A complete three-phase modulator can be implemented in as few as 102 logic elements. The performance of the proposed modulators is compared through simulation and experimental testing of a 6 kW, three-phase DC-to-AC inverter. Subject to limits on the modulation index, the proposed modulators deliver spread-spectrum output currents with total harmonic distortion comparable to a standard carrier-based space vector pulse width modulator.
Resumo:
A robust and reliable grid power interface system for wind turbines using a permanent-magnet synchronous generator (PMSG) is proposed in this paper, where an integration of a generator-side three-switch buck-type rectifier and a grid-side Z-source inverter is employed as a bridge between the generator and the grid. The modulation strategy for the proposed topology is developed from space-vector modulation and Z-source network operation principles. Two PMSG control methods, namely, unity-power-factor control and rotor-flux-orientation control (Id = 0), are studied to establish an optimized control scheme for the generator-side three-switch buck-type rectifier. The system control scheme decouples active- and reactive-power control through voltage-oriented control and optimizes PMSG control for the grid- and generator-side converters independently. Maximum power point tracking is implemented by adjusting the shoot-through duty cycles of the Z-source network. The design considerations of the passive components are also provided. The performances and practicalities of the designed architecture have been verified by simulations and experiments.
Resumo:
Background Sexually-transmitted pathogens often have severe reproductive health implications if treatment is delayed or absent, especially in females. The complex processes of disease progression, namely replication and ascension of the infection through the genital tract, span both extracellular and intracellular physiological scales, and in females can vary over the distinct phases of the menstrual cycle. The complexity of these processes, coupled with the common impossibility of obtaining comprehensive and sequential clinical data from individual human patients, makes mathematical and computational modelling valuable tools in developing our understanding of the infection, with a view to identifying new interventions. While many within-host models of sexually-transmitted infections (STIs) are available in existing literature, these models are difficult to deploy in clinical/experimental settings since simulations often require complex computational approaches. Results We present STI-GMaS (Sexually-Transmitted Infections – Graphical Modelling and Simulation), an environment for simulation of STI models, with a view to stimulating the uptake of these models within the laboratory or clinic. The software currently focuses upon the representative case-study of Chlamydia trachomatis, the most common sexually-transmitted bacterial pathogen of humans. Here, we demonstrate the use of a hybrid PDE–cellular automata model for simulation of a hypothetical Chlamydia vaccination, demonstrating the effect of a vaccine-induced antibody in preventing the infection from ascending to above the cervix. This example illustrates the ease with which existing models can be adapted to describe new studies, and its careful parameterisation within STI-GMaS facilitates future tuning to experimental data as they arise. Conclusions STI-GMaS represents the first software designed explicitly for in-silico simulation of STI models by non-theoreticians, thus presenting a novel route to bridging the gap between computational and clinical/experimental disciplines. With the propensity for model reuse and extension, there is much scope within STI-GMaS to allow clinical and experimental studies to inform model inputs and drive future model development. Many of the modelling paradigms and software design principles deployed to date transfer readily to other STIs, both bacterial and viral; forthcoming releases of STI-GMaS will extend the software to incorporate a more diverse range of infections.
Resumo:
This thesis is a study of new design methods for allowing evolutionary algorithms to be more effectively utilised in aerospace optimisation applications where computation needs are high and computation platform space may be restrictive. It examines the applicability of special hardware computational platforms known as field programmable gate arrays and shows that with the right implementation methods they can offer significant benefits. This research is a step forward towards the advancement of efficient and highly automated aircraft systems for meeting compact physical constraints in aerospace platforms and providing effective performance speedups over traditional methods.
Resumo:
Education in the 21st century demands a model for understanding a new culture of learning in the face of rapid change, open access data and geographical diversity. Teachers no longer need to provide the latest information because students themselves are taking an active role in peer collectives to help create it. This paper examines, through an Australian case study entitled ‘Design Minds’, the development of an online design education platform as a key initiative to enact a government priority for statewide cultural change through design-based curriculum. Utilising digital technology to create a supportive community, ‘Design Minds’ recognises that interdisciplinary learning fostered through engagement will empower future citizens to think, innovate, and discover. This paper details the participatory design process undertaken with multiple stakeholders to create the platform. It also outlines a proposed research agenda for future measurement of its value in creating a new learning culture, supporting regional and remote communities, and revitalising frontline services. It is anticipated this research will inform ongoing development of the online platform, and future design education and research programs in K-12 schools in Australia.
Resumo:
This paper presents the results of a full-scale research project undertaken to assess scour losses/gains for modular tray green roof specimens placed on a mock-up building, and identify important factors to consider for wind design criteria. Visual assessment of the experimental results showed that usage of vegetation, parapet height, wind direction, and test duration were the predominant factors affecting scour resistance of the growth media in tested specimens. Statistical analysis results indicated that the differences in soil losses measured among Phase 2’s test trials were more significant than those in Phase 1. This was attributed to the lack of parapet, cornering wind conditions, and longer test duration found in Phase 2. Findings presented in this paper constitute a benchmark for future research to improve the knowledge gap that exists in green roof wind design.
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.
Resumo:
Recent literature credits community art spaces with both enhancing social interaction and engagement and generating economic revitalization. This article argues that the ability of art spaces to realize these outcomes is linked to their role as public spaces and that their community development potential can be expanded with greater attention to this role. An analysis of the public space characteristics is useful because it encourages consideration of sometimes overlooked issues, particularly the effect of the physical environment on outcomes related to community development. I examine the relationship between public space and community development at various types of art spaces including artist cooperatives, ethnic-specific art spaces, and city-sponsored art centers in central city and suburban locations. This study shows that through their programming and other activities, art spaces serve various public space roles related to community development. However, the ability of many to perform as public spaces is hindered by facility design issues and poor physical connections in their surrounding area. This article concludes with proposals for enhancing the community development role of the art spaces through their function as public spaces.
Resumo:
While the body, time and space are fundamental to human experience, comparatively little attention has been given to the connections between them. Here scholars from a wide range of disciplines explore important themes of embodied life in time and space across cultures, activities and bodymind states. Motivated by a common desire to deepen and extend our comprehension of these phenomena and the connections and conversations between them, this book emerged from intense inter-disciplinary dialogue during the 1st Global Conferences on Time, Space and the Body and Body Horror. A plenitude of theoretical approaches and media are deployed to investigate assumptions and pose problems, to creatively deconstruct and reconstruct the terms through which experience is rendered meaningful, pleasurable, and functional. These investigations, pursued through various research methods in fields of the arts, social and psychological sciences and humanities, invite readers into a genuinely pluralistic conversation around the most basic and profound aspects of being.
Resumo:
This chapter reports on a study that reveals the essence of participation in urban spaces by ten children who live with various physical conditions: Muscular Dystrophy, Cerebral Palsy, and Autoimmune Rheumatic Diseases. These conditions affect muscle and movement differently resulting in diverse ways in which children move through space (personal mobility). The children at the time of the research were 9-12 years of age residing in South-east Queensland, Australia. The approach and methods selected for this study, interpretive phenomenological inquiry and grounded theory, were chosen for their capacity to capture the complexity and multiple interactions of the child’s urban living. The confronting and poignant accounts by children and their families of their experiences produced a new way of understanding the concept of participation, as a ‘journey of becoming involved.’ Their accounts of performing everyday routines (e.g. leaving home, getting in and out of the car, and entering places) in urban spaces (neighbourhood streets, schools, open spaces, shopping centres, and hospitals) revealed differences in the way settings were experienced. These differences were associated with the interplay between the body, space and context. Where interplays were problematic, explicit decisions about children’s involvement were made. These decisions were described in terms of ‘avoid going’, ‘pick and choose’, ‘discontinue’, ‘accept’, or ‘contest.’ What these decisions mean is some spaces are avoided, some journeys are discontinued, and some barriers encountered in journeys are normalised as everyday experiences, i.e. ‘tolerable discrimination’. These actions resulted in experiences of non-participation or partial–tokenistic participation. The key substantive contribution of the research lies in the identification of points in children’s journeys that shape participation experience. These points identify where future interventions in policy, programming and design can be made to make real and sustaining changes to lives of children and their families in geographies crucial to urban living.
Resumo:
The experiences and constructs of time, space and bodies saturate human discourse—naturally enough, since they are fundamental to existence—yet there has long been a tendency for the terms to be approached somewhat independently, belying the depth of their interconnections. It was a desire to address that apparent shortcoming that inspired this book, and the interdisciplinary meetings from which it was born, the 1st Global Conferences on ‘Time, Space and the Body’ and ‘Body Horror’ held in Sydney in February 2013. Following the lively, often provocative, exchange of ideas throughout those meetings, the writing here crosses conventional boundaries inhabiting everyday life and liminal experiences, across cultures, life circumstances, and bodily states. Through numerous theoretical frameworks and with reference to a variety of media, the authors problematize or deconstruct commonplace assumptions to reveal challenging new perspectives on the diverse cultures and communities which make our world. If there is an overarching theme of this collection it is diversity itself. The writers here come from numerous academic fields, but a good number of them also draw on first-hand cultural production in the arts: photography, sculpture and fine art instillation, for example. Of course, however laudable it might be, there is a potential problem in such diversity: does it produce fruitful dialogue moving toward creative, workable syntheses or simply a cacophony of competing, incomprehensible, barely comprehending voices? To a large degree this depends upon the intellectual, existential ambitions as well as the old-fashioned goodnatured tolerance of both writers and readers. But we hope three unifying characteristics are discernable in the following chapters viewed as a whole: firstly, a genuine concern for the world humans inhabit and the communities they form as bodies in space and time; secondly, an emphasis upon the experience of the human subject, exemplified perhaps by the number of chapters drawing on phenomenology; thirdly, an adventurous, explorative impulse associated with an underlying sense that being, since it is inseparable from the body’s temporality, is always becoming, and here the presence of poststructuralist influences is unmistakable, often explicit. Our challenge as editors has been to present the enormous variety of subjects and views in a way that would render the book coherent and at the same time encourage readers to make explorations themselves into realms they might usually consider beyond their field of interest. To that end we have divided the book into six sections around loosely defined themes, each offering different angles on how time and/or space unfold in and around bodies.
Resumo:
Bayesian experimental design is a fast growing area of research with many real-world applications. As computational power has increased over the years, so has the development of simulation-based design methods, which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte Carlo and approximate Bayes methods, facilitating more complex design problems to be solved. The Bayesian framework provides a unified approach for incorporating prior information and/or uncertainties regarding the statistical model with a utility function which describes the experimental aims. In this paper, we provide a general overview on the concepts involved in Bayesian experimental design, and focus on describing some of the more commonly used Bayesian utility functions and methods for their estimation, as well as a number of algorithms that are used to search over the design space to find the Bayesian optimal design. We also discuss other computational strategies for further research in Bayesian optimal design.