326 resultados para Mobile Multimedia data
Resumo:
The Mobile Learning Kit is a new digital learning application that allows students and teachers to compose, publish, discuss and evaluate their own mobile learning games and events. The research field was interaction design in the context of mobile learning. The research methodology was primarily design-based supported by collaboration between participating disciplines of game design, education and information technology. As such, the resulting MiLK application is a synthesis of current pedagogical models and experimental interaction design techniques and technologies. MiLK is a dynamic learning resource for incorporating both formal and informal teaching and learning practices while exploiting mobile phones and contemporary digital social tools in innovative ways. MiLK explicitly addresses other predominant themes in educational scholarship that relate to current education innovation and reform such as personalised learning, life-long learning and new learning spaces. The success of this project is indicated through rigorous trials and actual uptake of MiLK by international participants in Australia, UK, US and South Africa. MiLK was awarded for excellence in the use of emerging technologies for improved learning and teaching as a finalist (top 3) in the Handheld Learning and Innovation Awards in the UK in 2008. MiLK was awarded funding from the Australasian CRC for Interaction Design in 2008 to prepare the MiLK application for development. MiLK has been awarded over $230,000 from ACID since 2006. The resulting application and research materials are now being commercialised by a new company, ‘ACID Services’.
Resumo:
Objective: To quantify the extent to which alcohol related injuries are adequately identified in hospitalisation data using ICD-10-AM codes indicative of alcohol involvement. Method: A random sample of 4373 injury-related hospital separations from 1 July 2002 to 30 June 2004 were obtained from a stratified random sample of 50 hospitals across 4 states in Australia. From this sample, cases were identified as involving alcohol if they contained an ICD-10-AM diagnosis or external cause code referring to alcohol, or if the text description extracted from the medical records mentioned alcohol involvement. Results: Overall, identification of alcohol involvement using ICD codes detected 38% of the alcohol-related sample, whilst almost 94% of alcohol-related cases were identified through a search of the text extracted from the medical records. The resultant estimate of alcohol involvement in injury-related hospitalisations in this sample was 10%. Emergency department records were the most likely to identify whether the injury was alcohol-related with almost three-quarters of alcohol-related cases mentioning alcohol in the text abstracted from these records. Conclusions and Implications: The current best estimates of the frequency of hospital admissions where alcohol is involved prior to the injury underestimate the burden by around 62%. This is a substantial underestimate that has major implications for public policy, and highlights the need for further work on improving the quality and completeness of routine administrative data sources for identification of alcohol-related injuries.
Resumo:
Objective: To examine the sources of coding discrepancy for injury morbidity data and explore the implications of these sources for injury surveillance.-------- Method: An on-site medical record review and recoding study was conducted for 4373 injury-related hospital admissions across Australia. Codes from the original dataset were compared to the recoded data to explore the reliability of coded data aand sources of discrepancy.---------- Results: The most common reason for differences in coding overall was assigning the case to a different external cause category with 8.5% assigned to a different category. Differences in the specificity of codes assigned within a category accounted for 7.8% of coder difference. Differences in intent assignment accounted for 3.7% of the differences in code assignment.---------- Conclusions: In the situation where 8 percent of cases are misclassified by major category, the setting of injury targets on the basis of extent of burden is a somewhat blunt instrument Monitoring the effect of prevention programs aimed at reducing risk factors is not possible in datasets with this level of misclassification error in injury cause subcategories. Future research is needed to build the evidence base around the quality and utility of the ICD classification system and application of use of this for injury surveillance in the hospital environment.
Resumo:
We propose to design a Custom Learning System that responds to the unique needs and potentials of individual students, regardless of their location, abilities, attitudes, and circumstances. This project is intentionally provocative and future-looking but it is not unrealistic or unfeasible. We propose that by combining complex learning databases with a learner’s personal data, we could provide all students with a personal, customizable, and flexible education. This paper presents the initial research undertaken for this project of which the main challenges were to broadly map the complex web of data available, to identify what logic models are required to make the data meaningful for learning, and to translate this knowledge into simple and easy-to-use interfaces. The ultimate outcome of this research will be a series of candidate user interfaces and a broad system logic model for a new smart system for personalized learning. This project is student-centered, not techno-centric, aiming to deliver innovative solutions for learners and schools. It is deliberately future-looking, allowing us to ask questions that take us beyond the limitations of today to motivate new demands on technology.
Resumo:
This paper explores how mobile games can transform everyday places into dynamic learning spaces filled with information and inspiration. It discusses the motivation inherent in playing games and creating games for others, and how this stimulates an iterative process of creation and reflection and evokes a natural desire to engage in learning. The use of MiLK at the Adelaide Botanic Gardens is offered as a case in point. MiLK is an authoring tool that allows students and teachers to create and share SMS games for mobile phones. A group of South Australian high school students used MiLK to play a game, create their own games and play each other’s games during a day at the gardens. This paper details the learning processes involved in these activities and how the students reflected on their learning, conducted peer assessment, and engaged in a two-way discussion with their teacher about new technologies and their implications for learning. The paper concludes with a discussion of the needs and requirements of 21st Century learners and how MiLK can support constructivist and connectivist teaching methods that engage learners and may produce an appropriately skilled future workforce.
Resumo:
Competent navigation in an environment is a major requirement for an autonomous mobile robot to accomplish its mission. Nowadays, many successful systems for navigating a mobile robot use an internal map which represents the environment in a detailed geometric manner. However, building, maintaining and using such environment maps for navigation is difficult because of perceptual aliasing and measurement noise. Moreover, geometric maps require the processing of huge amounts of data which is computationally expensive. This thesis addresses the problem of vision-based topological mapping and localisation for mobile robot navigation. Topological maps are concise and graphical representations of environments that are scalable and amenable to symbolic manipulation. Thus, they are well-suited for basic robot navigation applications, and also provide a representational basis for the procedural and semantic information needed for higher-level robotic tasks. In order to make vision-based topological navigation suitable for inexpensive mobile robots for the mass market we propose to characterise key places of the environment based on their visual appearance through colour histograms. The approach for representing places using visual appearance is based on the fact that colour histograms change slowly as the field of vision sweeps the scene when a robot moves through an environment. Hence, a place represents a region of the environment rather than a single position. We demonstrate in experiments using an indoor data set, that a topological map in which places are characterised using visual appearance augmented with metric clues provides sufficient information to perform continuous metric localisation which is robust to the kidnapped robot problem. Many topological mapping methods build a topological map by clustering visual observations to places. However, due to perceptual aliasing observations from different places may be mapped to the same place representative in the topological map. A main contribution of this thesis is a novel approach for dealing with the perceptual aliasing problem in topological mapping. We propose to incorporate neighbourhood relations for disambiguating places which otherwise are indistinguishable. We present a constraint based stochastic local search method which integrates the approach for place disambiguation in order to induce a topological map. Experiments show that the proposed method is capable of mapping environments with a high degree of perceptual aliasing, and that a small map is found quickly. Moreover, the method of using neighbourhood information for place disambiguation is integrated into a framework for topological off-line simultaneous localisation and mapping which does not require an initial categorisation of visual observations. Experiments on an indoor data set demonstrate the suitability of our method to reliably localise the robot while building a topological map.
Resumo:
The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of climate change on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since most of building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. In this paper, the methods used to prepare future weather data for the study of the impact of climate change are reviewed. The advantages and disadvantages of each method are discussed. The inherent relationship between these methods is also illustrated. Based on these discussions and the analysis of Australian historic climatic data, an effective framework and procedure to generate future hourly weather data is presented. It is shown that this method is not only able to deal with different levels of available information regarding the climate change, but also can retain the key characters of a “typical” year weather data for a desired period.
Resumo:
We estimate the cost of droughts by matching rainfall data with individual life satisfaction. Our context is Australia over the period 2001 to 2004, which included a particularly severe drought. Using fixed-effect models, we find that a drought in spring has a detrimental effect on life satisfaction equivalent to an annual reduction in income of A$18,000. This effect, however, is only found for individuals living in rural areas. Using our estimates, we calculate that the predicted doubling of the frequency of spring droughts will lead to the equivalent loss in life satisfaction of just over 1% of GDP annually.
Resumo:
Patients with chest discomfort or other symptoms suggestive of acute coronary syndrome (ACS) are one of the most common categories seen in many Emergency Departments (EDs). While the recognition of patients at high-risk of ACS has improved steadily, identifying the majority of chest pain presentations who fall into the low-risk group remains a challenge. Research in this area needs to be transparent, robust, applicable to all hospitals from large tertiary centres to rural and remote sites, and to allow direct comparison between different studies with minimum patient spectrum bias. A standardised approach to the research framework using a common language for data definitions must be adopted to achieve this. The aim was to create a common framework for a standardised data definitions set that would allow maximum value when extrapolating research findings both within Australasian ED practice, and across similar populations worldwide. Therefore a comprehensive data definitions set for the investigation of non-traumatic chest pain patients with possible ACS was developed, specifically for use in the ED setting. This standardised data definitions set will facilitate ‘knowledge translation’ by allowing extrapolation of useful findings into the real-life practice of emergency medicine.
Resumo:
Understanding the future development of interaction design as it applies to learning and training scenarios is crucial to effective development of curriculum and appropriate application of social and mobile communication technologies. As Attewell & Saville-Smith have recognised (2004), the use of mobile communication devices for improved literacy and numeracy is a desirable prospect among young people who represent the average age of undergraduate students. Further, with the growing penetration of broadband internet access, the ubiquity of wireless access in educational locations, the rise of ultra-mobile portable computers and the proliferation of social software applications in educational contexts, there are a growing number of channels for facilitation of learning. Nevertheless, there has been insufficient consideration of the interaction design issues that affect the effective facilitation of such learning. This paper contends that there is a clear need to design mobile and social learning to accommodate the benefits of these diverse channels for interaction. Additionally, there is a need to implement suitable testing processes to ensure participants in mobile and social learning are contributing effectively and maximising their learning. Through the presentation of case studies in mobile and social learning, the paper attempts to demonstrate how considered interaction design techniques can improve the effectiveness of new learning channels.
Resumo:
Seasonal patterns have been found in a remarkable range of health conditions, including birth defects, respiratory infections and cardiovascular disease. Accurately estimating the size and timing of seasonal peaks in disease incidence is an aid to understanding the causes and possibly to developing interventions. With global warming increasing the intensity of seasonal weather patterns around the world, a review of the methods for estimating seasonal effects on health is timely. This is the first book on statistical methods for seasonal data written for a health audience. It describes methods for a range of outcomes (including continuous, count and binomial data) and demonstrates appropriate techniques for summarising and modelling these data. It has a practical focus and uses interesting examples to motivate and illustrate the methods. The statistical procedures and example data sets are available in an R package called ‘season’. Adrian Barnett is a senior research fellow at Queensland University of Technology, Australia. Annette Dobson is a Professor of Biostatistics at The University of Queensland, Australia. Both are experienced medical statisticians with a commitment to statistical education and have previously collaborated in research in the methodological developments and applications of biostatistics, especially to time series data. Among other projects, they worked together on revising the well-known textbook "An Introduction to Generalized Linear Models," third edition, Chapman Hall/CRC, 2008. In their new book they share their knowledge of statistical methods for examining seasonal patterns in health.
Resumo:
Aims: To describe a local data linkage project to match hospital data with the Australian Institute of Health and Welfare (AIHW) National Death Index (NDI) to assess longterm outcomes of intensive care unit patients. Methods: Data were obtained from hospital intensive care and cardiac surgery databases on all patients aged 18 years and over admitted to either of two intensive care units at a tertiary-referral hospital between 1 January 1994 and 31 December 2005. Date of death was obtained from the AIHW NDI by probabilistic software matching, in addition to manual checking through hospital databases and other sources. Survival was calculated from time of ICU admission, with a censoring date of 14 February 2007. Data for patients with multiple hospital admissions requiring intensive care were analysed only from the first admission. Summary and descriptive statistics were used for preliminary data analysis. Kaplan-Meier survival analysis was used to analyse factors determining long-term survival. Results: During the study period, 21 415 unique patients had 22 552 hospital admissions that included an ICU admission; 19 058 surgical procedures were performed with a total of 20 092 ICU admissions. There were 4936 deaths. Median follow-up was 6.2 years, totalling 134 203 patient years. The casemix was predominantly cardiac surgery (80%), followed by cardiac medical (6%), and other medical (4%). The unadjusted survival at 1, 5 and 10 years was 97%, 84% and 70%, respectively. The 1-year survival ranged from 97% for cardiac surgery to 36% for cardiac arrest. An APACHE II score was available for 16 877 patients. In those discharged alive from hospital, the 1, 5 and 10-year survival varied with discharge location. Conclusions: ICU-based linkage projects are feasible to determine long-term outcomes of ICU patients
Resumo:
High-speed broadband internet access is widely recognised as a catalyst to social and economic development, having a significant impact on global economy. Rural Australia’s inherent dispersed population over a large geographical area make the delivery of efficient, well-maintained and cost-effective internet a challenging task. The novel and highly-efficient Multi-User-Single-Antenna for MIMO (MUSA-MIMO) broadband wireless communication technology can effectively be used to deliver wireless broadband access to rural areas. This research aims to develop for the first time, an efficient and accurate algorithm for the tracking and prediction of Channel State Information (CSI) at the transmitter, by characterising time variation effects of the wireless communication channel on the performance of a highly-efficient MUSA-MIMO technology particularly suited for rural communities, improving their quality of life and economic prosperity.
Resumo:
The recently proposed data-driven background dataset refinement technique provides a means of selecting an informative background for support vector machine (SVM)-based speaker verification systems. This paper investigates the characteristics of the impostor examples in such highly-informative background datasets. Data-driven dataset refinement individually evaluates the suitability of candidate impostor examples for the SVM background prior to selecting the highest-ranking examples as a refined background dataset. Further, the characteristics of the refined dataset were analysed to investigate the desired traits of an informative SVM background. The most informative examples of the refined dataset were found to consist of large amounts of active speech and distinctive language characteristics. The data-driven refinement technique was shown to filter the set of candidate impostor examples to produce a more disperse representation of the impostor population in the SVM kernel space, thereby reducing the number of redundant and less-informative examples in the background dataset. Furthermore, data-driven refinement was shown to provide performance gains when applied to the difficult task of refining a small candidate dataset that was mis-matched to the evaluation conditions.
Resumo:
This study assesses the recently proposed data-driven background dataset refinement technique for speaker verification using alternate SVM feature sets to the GMM supervector features for which it was originally designed. The performance improvements brought about in each trialled SVM configuration demonstrate the versatility of background dataset refinement. This work also extends on the originally proposed technique to exploit support vector coefficients as an impostor suitability metric in the data-driven selection process. Using support vector coefficients improved the performance of the refined datasets in the evaluation of unseen data. Further, attempts are made to exploit the differences in impostor example suitability measures from varying features spaces to provide added robustness.