515 resultados para Medical image processing
Resumo:
This paper presents a general, global approach to the problem of robot exploration, utilizing a topological data structure to guide an underlying Simultaneous Localization and Mapping (SLAM) process. A Gap Navigation Tree (GNT) is used to motivate global target selection and occluded regions of the environment (called “gaps”) are tracked probabilistically. The process of map construction and the motion of the vehicle alters both the shape and location of these regions. The use of online mapping is shown to reduce the difficulties in implementing the GNT.
Resumo:
The Link the Wiki track at INEX 2008 offered two tasks, file-to-file link discovery and anchor-to-BEP link discovery. In the former 6600 topics were used and in the latter 50 were used. Manual assessment of the anchor-to-BEP runs was performed using a tool developed for the purpose. Runs were evaluated using standard precision & recall measures such as MAP and precision / recall graphs. 10 groups participated and the approaches they took are discussed. Final evaluation results for all runs are presented.
Resumo:
This paper is about planning paths from overhead imagery, the novelty of which is taking explicit account of uncertainty in terrain classification and spatial variation in terrain cost. The image is first classified using a multi-class Gaussian Process Classifier which provides probabilities of class membership at each location in the image. The probability of class membership at a particular grid location is then combined with a terrain cost evaluated at that location using a spatial Gaussian process. The resulting cost function is, in turn, passed to a planner. This allows both the uncertainty in terrain classification and spatial variations in terrain costs to be incorporated into the planned path. Because the cost of traversing a grid cell is now a probability density rather than a single scalar value, we can produce not only the most-likely shortest path between points on the map, but also sample from the cost map to produce a distribution of paths between the points. Results are shown in the form of planned paths over aerial maps, these paths are shown to vary in response to local variations in terrain cost.
Resumo:
A service-oriented system is composed of independent software units, namely services, that interact with one another exclusively through message exchanges. The proper functioning of such system depends on whether or not each individual service behaves as the other services expect it to behave. Since services may be developed and operated independently, it is unrealistic to assume that this is always the case. This article addresses the problem of checking and quantifying how much the actual behavior of a service, as recorded in message logs, conforms to the expected behavior as specified in a process model.We consider the case where the expected behavior is defined using the BPEL industry standard (Business Process Execution Language for Web Services). BPEL process definitions are translated into Petri nets and Petri net-based conformance checking techniques are applied to derive two complementary indicators of conformance: fitness and appropriateness. The approach has been implemented in a toolset for business process analysis and mining, namely ProM, and has been tested in an environment comprising multiple Oracle BPEL servers.
Resumo:
Feature extraction and selection are critical processes in developing facial expression recognition (FER) systems. While many algorithms have been proposed for these processes, direct comparison between texture, geometry and their fusion, as well as between multiple selection algorithms has not been found for spontaneous FER. This paper addresses this issue by proposing a unified framework for a comparative study on the widely used texture (LBP, Gabor and SIFT) and geometric (FAP) features, using Adaboost, mRMR and SVM feature selection algorithms. Our experiments on the Feedtum and NVIE databases demonstrate the benefits of fusing geometric and texture features, where SIFT+FAP shows the best performance, while mRMR outperforms Adaboost and SVM. In terms of computational time, LBP and Gabor perform better than SIFT. The optimal combination of SIFT+FAP+mRMR also exhibits a state-of-the-art performance.
Resumo:
The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics.
Resumo:
One of the major challenges in achieving long term robot autonomy is the need for a SLAM algorithm that can perform SLAM over the operational lifetime of the robot, preferably without human intervention or supervision. In this paper we present insights gained from a two week long persistent SLAM experiment, in which a Pioneer robot performed mock deliveries in a busy office environment. We used the biologically inspired visual SLAM system, RatSLAM, combined with a hybrid control architecture that selected between exploring the environment, performing deliveries, and recharging. The robot performed more than a thousand successful deliveries with only one failure (from which it recovered), travelled more than 40 km over 37 hours of active operation, and recharged autonomously 23 times. We discuss several issues arising from the success (and limitations) of this experiment and two subsequent avenues of work.
Resumo:
This paper describes a new system, dubbed Continuous Appearance-based Trajectory Simultaneous Localisation and Mapping (CAT-SLAM), which augments sequential appearance-based place recognition with local metric pose filtering to improve the frequency and reliability of appearance-based loop closure. As in other approaches to appearance-based mapping, loop closure is performed without calculating global feature geometry or performing 3D map construction. Loop-closure filtering uses a probabilistic distribution of possible loop closures along the robot’s previous trajectory, which is represented by a linked list of previously visited locations linked by odometric information. Sequential appearance-based place recognition and local metric pose filtering are evaluated simultaneously using a Rao–Blackwellised particle filter, which weights particles based on appearance matching over sequential frames and the similarity of robot motion along the trajectory. The particle filter explicitly models both the likelihood of revisiting previous locations and exploring new locations. A modified resampling scheme counters particle deprivation and allows loop-closure updates to be performed in constant time for a given environment. We compare the performance of CAT-SLAM with FAB-MAP (a state-of-the-art appearance-only SLAM algorithm) using multiple real-world datasets, demonstrating an increase in the number of correct loop closures detected by CAT-SLAM.
Resumo:
Large margin learning approaches, such as support vector machines (SVM), have been successfully applied to numerous classification tasks, especially for automatic facial expression recognition. The risk of such approaches however, is their sensitivity to large margin losses due to the influence from noisy training examples and outliers which is a common problem in the area of affective computing (i.e., manual coding at the frame level is tedious so coarse labels are normally assigned). In this paper, we leverage the relaxation of the parallel-hyperplanes constraint and propose the use of modified correlation filters (MCF). The MCF is similar in spirit to SVMs and correlation filters, but with the key difference of optimizing only a single hyperplane. We demonstrate the superiority of MCF over current techniques on a battery of experiments.
Resumo:
In this paper we describe the dynamic simulation of an 18 degrees of freedom hexapod robot with the objective of developing control algorithms for smooth, efficient and robust walking in irregular terrain. This is to be achieved by using force sensors in addition to the conventional joint angle sensors as proprioceptors. The reaction forces on the feet of the robot provide the necessary information on the robots interaction with the terrain. As a first step we validate the simulator by implementing movement control by joint torques using PID controllers. As an unexpected by-product we find that it is simple to achieve robust walking behaviour on even terrain for a hexapod with the help of PID controllers and by specifying a trajectory of only a few joint configurations.
Resumo:
A wireless sensor network collected real-time water-quality measurements to investigate how current irrigation practices—in particular, underground water salination—affect the environment. New protocols provided high end-to-end packet delivery rates in the hostile deployment environment.
Resumo:
In this work we present an optimized fuzzy visual servoing system for obstacle avoidance using an unmanned aerial vehicle. The cross-entropy theory is used to optimise the gains of our controllers. The optimization process was made using the ROS-Gazebo 3D simulation with purposeful extensions developed for our experiments. Visual servoing is achieved through an image processing front-end that uses the Camshift algorithm to detect and track objects in the scene. Experimental flight trials using a small quadrotor were performed to validate the parameters estimated from simulation. The integration of cross- entropy methods is a straightforward way to estimate optimal gains achieving excellent results when tested in real flights.
Resumo:
This work presents two UAS See and Avoid approaches using Fuzzy Control. We compare the performance of each controller when a Cross-Entropy method is applied to optimase the parameters for one of the controllers. Each controller receive information from an image processing front-end that detect and track targets in the environment. Visual information is then used under a visual servoing approach to perform autonomous avoidance. Experimental flight trials using a small quadrotor were performed to validate and compare the behaviour of both controllers
Resumo:
This paper presents the flight trials of an electro-optical (EO) sense-and-avoid system onboard a Cessna host aircraft (camera aircraft). We focus on the autonomous collision avoidance capability of the sense-and-avoid system; that is, closed-loop integration with the onboard aircraft autopilot. We also discuss the system’s approach to target detection and avoidance control, as well as the methodology of the flight trials. The results demonstrate the ability of the sense-and-avoid system to automatically detect potential conflicting aircraft and engage the host Cessna autopilot to perform an avoidance manoeuvre, all without any human intervention
Resumo:
In a commercial environment, it is advantageous to know how long it takes customers to move between different regions, how long they spend in each region, and where they are likely to go as they move from one location to another. Presently, these measures can only be determined manually, or through the use of hardware tags (i.e. RFID). Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. They include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. While these traits cannot provide robust authentication, they can be used to provide identification at long range, and aid in object tracking and detection in disjoint camera networks. In this chapter we propose using colour, height and luggage soft biometrics to determine operational statistics relating to how people move through a space. A novel average soft biometric is used to locate people who look distinct, and these people are then detected at various locations within a disjoint camera network to gradually obtain operational statistics