410 resultados para Least Energy Solutions
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.
Resumo:
Exploiting wind-energy is one possible way to extend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
Australia is rich in renewable energy resources such as wind, solar and geothermal. Geographical diversity of these renewable resources combined with developing climate change policies poses a great challenge for the long term interconnection planning. Intermittency of wind and solar potentially driving the development of new transmission lines bring additional complexity to power system operations and planning. This paper provides an overview of generation and transmission planning studies in Australia to meet 20% renewable energy target by 2020. Appraisal of the effectiveness of dispersed energy storage, non schedulable peaking plants, wide area controls and demand management techniques to aid the penetration of renewables is presented in this paper
Resumo:
The available wind power is stochastic and requires appropriate tools in the OPF model for economic and reliable power system operation. This paper exhibit the OPF formulation with factors involved in the intermittency of wind power. Weibull distribution is adopted to find the stochastic wind speed and power distribution. The reserve requirement is evaluated based on the wind distribution and risk of under/over estimation of the wind power. In addition, the Wind Energy Conversion System (WECS) is represented by Doubly Fed Induction Generator (DFIG) based wind farms. The reactive power capability for DFIG based wind farm is also analyzed. The study is performed on IEEE-30 bus system with wind farm located at different buses and with different wind profiles. Also the reactive power capacity to be installed in the wind farm to maintain a satisfactory voltage profile under the various wind flow scenario is demonstrated.
Resumo:
Over the past few years, the Midwest ISO has experienced a surge in requests to interconnect large amounts of wind generation, driven largely by a favorable political environment and an abundant wind resource in the Midwestern US. This tremendous influx of proposed generators along with a highly constrained transmission system adversely impacted interconnection queue processing, resulting in an unmanageable backlog. Under these circumstances, Midwest ISO successfully reformed the interconnection tariff to improve cycle times and provide increased certainty to interconnection customers. One of the key features of the reformed queue process is the System Planning and Analysis (SPA) phase which allows integration of the interconnection studies with regional transmission planning. This paper presents a brief background of the queue reform effort and then delves deeply in to the work performed at the Midwest ISO during the first SPA cycle - the study approach, the challenges faced in having to study over 50,000 MWs of wind generation and the effective solutions designed to complete these studies within tariff timelines.
Resumo:
While the justice implications of climate change are well understood by the international climate regime, solutions to meaningfully address climate injustice are still emerging. This article explores how a number of different theories of justice have influenced the development of international climate regime policies and measures. Such analysis is undertaken by examining the theories of remedial justice, environmental justice, energy justice, social justice and international justice. This article demonstrates how each of these theories has influenced the development of international climate policies or measures. No one theory of justice has the ability to respond to the multifaceted justice implications that arise as a result of climate change. It is argued that a variety of lenses of justice are useful when examining issues of injustice in the climate context. It is believed that articulating the justice implications of climate change by reference to theories of justice assists in clarifying the key issues giving rise to injustice. This article finds that while there has been some progress by the regime in recognising the injustices associated with climate change, such recognition is piecemeal and the implementation of many of the policies and measures discussed within this article needs to be either scaled up, or extended into more far-reaching policies and measures to overcome climate justice concerns. Overall it is suggested that climate justice concerns need to be clearly enunciated within key adaptation instruments so as to provide a legal and legitimate basis upon which to leverage action.
Resumo:
Literacy in Early Childhood and Primary Education provides a comprehensive introduction to literacy teaching and learning. The book explores the continuum of literacy learning and children’s transitions from early childhood settings to junior primary classrooms, and then to senior primary and beyond. Reader-friendly and accessible, this book equips pre-service teachers with the theoretical underpinnings and practical strategies and skills needed to teach literacy. It places the ‘reading wars’ firmly in the past as it examines contemporary research and practices. The book covers important topics such as literacy acquisition, family literacies and multiliteracies, foundation skills for literacy learning, reading difficulties, assessment, and supporting diverse literacy learners in early childhood and primary classrooms. It also addresses some of the challenges that teachers may face in the classroom and provides solutions to these. Each chapter includes learning objectives, reflective questions and definitions to key terms to engage and assist readers. Further resources are also available at www.cambridge.edu.au/academic/literacy. Written by an expert author team and featuring real-world examples from literacy teachers and learners. Literacy in Early Childhood and Primary Education will help pre-service teachers feel confident teaching literacy to diverse age groups and abilities.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
A bifunctionalized TiO2 film containing a dye-sensitized zone and a catalysis zone is designed for visible-light photocatalytic reduction of CO2 to chemicals continuously. Charge separation can be accomplished with electron transferring to catalysis zone and positive charge transforming to anode. Highly efficient conversion of CO2 to formic acid, formaldehyde, and methanol is achieved through the transferring electrons on conduction bands (CB) of TiO2. Reduction of CO2 and O2 evolution take place in separated solutions on different catalysts. The separated solution carried out in this photo-reactor system can avoid CO2 reduction products being oxidized by anode. The yields of reduction products were enhanced remarkably by external electrical power. This study provides not only a new photocatalytic system but also a potential of renewable energy source via carbon dioxide.
Resumo:
The development and design of electric high power devices with electromagnetic computer-aided engineering (EM-CAE) software such as the Finite Element Method (FEM) and Boundary Element Method (BEM) has been widely adopted. This paper presents the analysis of a Fault Current Limiter (FCL), which acts as a high-voltage surge protector for power grids. A prototype FCL was built. The magnetic flux in the core and the resulting electromagnetic forces in the winding of the FCL were analyzed using both FEM and BEM. An experiment on the prototype was conducted in a laboratory. The data obtained from the experiment is compared to the numerical solutions to determine the suitability and accuracy of the two methods.
Resumo:
Reliable ambiguity resolution (AR) is essential to Real-Time Kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least-squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance-covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio-test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.
Resumo:
This paper presents an analytical model to study the effect of stiffening ribs on vibration transmission between two rectangular plates coupled at right angle. Interesting wave attenuation patterns were observed by placing the stiffening rib either on the source or on the receiving plate. The result can be used to improve the understanding of vibration and for vibration control of more complex structures such as transformer tanks and machine covers.
Resumo:
The paper presents a detailed analysis on the collective dynamics and delayed state feedback control of a three-dimensional delayed small-world network. The trivial equilibrium of the model is first investigated, showing that the uncontrolled model exhibits complicated unbounded behavior. Then three control strategies, namely a position feedback control, a velocity feedback control, and a hybrid control combined velocity with acceleration feedback, are then introduced to stabilize this unstable system. It is shown in these three control schemes that only the hybrid control can easily stabilize the 3-D network system. And with properly chosen delay and gain in the delayed feedback path, the hybrid controlled model may have stable equilibrium, or periodic solutions resulting from the Hopf bifurcation, or complex stranger attractor from the period-doubling bifurcation. Moreover, the direction of Hopf bifurcation and stability of the bifurcation periodic solutions are analyzed. The results are further extended to any "d" dimensional network. It shows that to stabilize a "d" dimensional delayed small-world network, at least a "d – 1" order completed differential feedback is needed. This work provides a constructive suggestion for the high dimensional delayed systems.