404 resultados para Flagella (Microbiology)
Resumo:
Nucleopolyhedrovirus (NPV) has become an integral part of integrated pest management (IPM) in many Australian agricultural and horticultural crops. This is the culmination of years of work conducted by researchers at the Queensland Department of Primary Industries and Fisheries (QDPI&F) and Ag Biotech Australia Pty Ltd. In the early 1970’s researchers at QDPI&F identified and isolated a virus in Helicoverpa armigera populations in the field. This NPV was extensively studied and shown to be highly specific to Helicoverpa and Heliothis species. Further work showed that when used appropriately the virus could be used effectively to manage these insects in crops such as sorghum, cotton, chickpea and sweet corn. A similar virus was first commercially produced in the USA in the 1970’s. This product, Elcar®, was introduced into Australia in the late 1970’s by Shell Chemicals with limited success. A major factor contributing to the poor adoption of Elcar was the concurrent enormous success of the synthetic pyrethroids. The importance of integrated pest management was probably also not widely accepted at that time. Gradual development of insect resistance to synthetic pyrethroids and other synthetic insecticides in Australia and the increased awareness of the importance of IPM meant that researchers once again turned their attentions to environmentally friendly pest management tools such NPV and beneficial insects. In the 1990’s a company called Rhone-Poulenc registered an NPV for use in Australian sorghum, chickpea and cotton. This product, Gemstar®, was imported from the USA. In 2000 Ag Biotech Australia established an in-vivo production facility in Australia to produce commercial volumes of a product similar to the imported product. This product was branded, ViVUS®, and was first registered and sold commercially in Australia in 2003. The initial production of ViVUS used a virus identical to the American product but replicating it in an Australian Helicoverpa species, H. armigera. Subsequent research collaboration between QDPI&F and Ag Biotech reinvigorated interest in the local virus strain. This was purified and the production system adapted to produce it on a commercial scale. This new version of ViVUS, which was branded ViVUS Gold®, was first registered and sold commercially in 2004. Widespread insect resistance to insecticides and a greater understanding of integrated pest management is leading to increased adoption of technologies such NPV in Australian agriculture.
Resumo:
Recently, Boots & Begon (1993) described the development of resistance to granulosis virus (GV) (Baculoviridae) infection in the moth Plodia interpunctella, following prolonged exposure to virus in laboratory cultures. Resistant insects exhibited reduced fitness in other respects, namely slower development and reduced egg viability, compared to control insects. These results were interpreted as pleiotropic effects of selection at the loci controlling resistance. Similar results have been described in a previous study: Fuxa & Richter (1989) used artificial selection to increase resistance to nuclear polyhedrasis virus (NPV) (Baculoviridae) infection in the moth Spodoptera frugiperda. The resulting gain in resistance they interpreted as the result of an increase in the frequency of alleles conferring resistance. Again, resistant insects exhibited maladaptive traits compared to controls, including a shorter adult life span, reduced number of eggs and reduced egg viability. In both studies the suggestion is made that selection against maladaptive traits will result in a decline in resistance, once selection for resistance is removed. Boots & Begon (1993) described a decrease in development time (towards that of control insects) within two generations of removing selection for resistance. Fuxa & Richter (1989) describe a decrease in resistance, so that within two generations of relaxing selection, previously resistant lines were not significantly more resistant than control insects. . .
Resumo:
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.
Resumo:
Increasing evidence suggests that chromatin modifications have important roles in modulating constitutive or alternative splicing. Here we demonstrate that the PWWP domain of the chromatin-associated protein Psip1/Ledgf can specifically recognize tri-methylated H3K36 and that, like this histone modification, the Psip1 short (p52) isoform is enriched at active genes. We show that the p52, but not the long (p75), isoform of Psip1 co-localizes and interacts with Srsf1 and other proteins involved in mRNA processing. The level of H3K36me3 associated Srsf1 is reduced in Psip1 mutant cells and alternative splicing of specific genes is affected. Moreover, we show altered Srsf1 distribution around the alternatively spliced exons of these genes in Psip1 null cells. We propose that Psip1/p52, through its binding to both chromatin and splicing factors, might act to modulate splicing.
Resumo:
Background: For medical and allied health students, bioscience knowledge underpins the successful scaffolding of learning in their developmental and advanced level units. Many of these students complete theory-based Bioscience units, followed by a unit in Pharmacology, which specifically requires knowledge of anatomy, physiology and microbiology. In general, studies of recall report relatively large losses over short retention intervals (months), which accumulate, but level off, for longer retention intervals (years) (Custers, 2010). However, there are no studies that specifically test the recall of bioscience knowledge by allied health students. Methods: We are tracking the recall of bioscience in nursing students prior to, and during, their Pharmacology unit. In each semester, students complete short, basic, knowledge-based MCQ quizzes on concepts from (i) the gastrointestinal system and (ii) fundamental microbiology. Students were given 5 days warning about the microbiology quizzes but were given no warning prior to the gastrointestinal system quiz. Performance in these quizzes was compared to individual student’s results in the final examination on these topics in the first semester of their degree. Results: At the start of the study, the nursing students performed better in the exam MCQs on the gastrointestinal system than on microbiology. In the exam, the students’ mean marks for the gastrointestinal system ranged from 69–83%, and this was successively reduced to 63%, 53% and 49% after 4, 9 and 16 months, respectively. The mean exam marks for microbiology was 48–58%, and this did not change significantly after 4 (63%), 9 (59%) or 16 months (47%). This suggests that warning the nursing students that they were to be quizzed on microbiology may have helped their recall. However, after 16 months regardless of the subject, the nursing students undertaking the Pharmacology unit recalled less than half of the bioscience quiz answers. Conclusions: Nursing students may not have the recall of bioscience necessary to study pharmacology, and this may limit their success in pharmacology. Reference: Custers, E. J. F. M. (2010). Long-term retention of basic science knowledge: a review study. Advances in Health Science Education, 15, 109–128.
Resumo:
Background: Knowledge of the human biosciences is fundamental to the development of competent nurse practitioners (Smales, 2010) with the requisite knowledge and skills, necessary for high quality patient care and good patient outcomes (Logan and Angel, 2011). Many of these students study bioscience units which cover topics in anatomy, physiology, pathophysiology and microbiology. Studies of science recall in general and medical education, report up to 33% loss of knowledge in the first year which declines to 50% in the subsequent year (Custers, 2010). Objectives: The objectives were to test the recall of bioscience knowledge by nursing students and to ascertain their perceptions of the testing. Questions explored: What would the results be for multiple choice questions in fundamental microbiology and gastrointestinal anatomy and physiology (A&P) undertaken by nursing students 4, 9 and 16 months after their first bioscience exam on these topics? Would pre-warning the students of a microbiology quiz and not a gastrointestinal A&P quiz affect the findings? How would the students respond to the testing when surveyed? Recall results: The nursing students performed better in the final exam on gastrointestinal A&P than on fundamental microbiology. There was an approximate 20% loss in knowledge of gastrointestinal A&P after 4 months and this did not change significantly over the next 12 months. Although there was an improved performance in microbiology quizzes after 4 months, there was no significant difference in results over the next 12 months. Survey results: More than 50% of students thought the testing helped them focus for the lectures and made them aware they had some pre-knowledge of the lecture topics. Discussion: Although there was a loss of knowledge of gastrointestinal A&P, it appears that warning the students about the microbiology quiz may have helped their recall. The majority of students valued the testing as a useful learning exercise. References: Custers, E. J. F. M. (2010). Long-term retention of basic science knowledge: a review study. Advances in Health Science Education, 15, 109-128. Smales, K. (2010). Learning and applying biosciences to clinical practice in nursing. Nursing Standard, 24(33), 35-39. Logan, P.A., & Angel, L. (2011). Nursing as a scientific undertaking and the intersection with science in undergraduate studies: implications for nursing management. Journal of Nursing Management, 19(3), 407-417.
Resumo:
Acinetobacter baumannii is a multidrug-resistant pathogen associated with hospital outbreaks of infection across the globe, particularly in the intensive care unit. The ability of A. baumannii to survive in the hospital environment for long periods is linked to antibiotic resistance and its capacity to form biofilms. Here we studied the prevalence, expression, and function of the A. baumannii biofilm-associated protein (Bap) in 24 carbapenem-resistant A. baumannii ST92 strains isolated from a single institution over a 10-year period. The bap gene was highly prevalent, with 22/24 strains being positive for bap by PCR. Partial sequencing of bap was performed on the index case strain MS1968 and revealed it to be a large and highly repetitive gene approximately 16 kb in size. Phylogenetic analysis employing a 1,948-amino-acid region corresponding to the C terminus of Bap showed that BapMS1968 clusters with Bap sequences from clonal complex 2 (CC2) strains ACICU, TCDC-AB0715, and 1656-2 and is distinct from Bap in CC1 strains. By using overlapping PCR, the bapMS1968 gene was cloned, and its expression in a recombinant Escherichia coli strain resulted in increased biofilm formation. A Bap-specific antibody was generated, and Western blot analysis showed that the majority of A. baumannii strains expressed an ∼200-kDa Bap protein. Further analysis of three Bap-positive A. baumannii strains demonstrated that Bap is expressed at the cell surface and is associated with biofilm formation. Finally, biofilm formation by these Bap-positive strains could be inhibited by affinity-purified Bap antibodies, demonstrating the direct contribution of Bap to biofilm growth by A. baumannii clinical isolates.
Resumo:
Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted.
Resumo:
Urinary tract infections (UTI) are among the most common infectious diseases of humans and are the most common nosocomial infections in the developed world. It is estimated that 40–50% of women and 5% of men will develop a UTI in their lifetime, and UTI accounts for more than 1 million hospitalizations and $1.6 billion in medical expenses each year in the USA. Uropathogenic Escherichia coli (UPEC) is the primary cause of UTI. This review presents an overview of recent discoveries related to the primary virulence factors of UPEC and major innate immune responses to infection of the lower urinary tract. New and emerging themes in UPEC research are discussed in the context of the interface between host and pathogen.
Resumo:
Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTI). To cause a UTI, UPEC must adhere to the epithelial cells of the urinary tract and overcome the shear flow forces of urine. This function is mediated primarily by fimbrial adhesins, which mediate specific attachment to host cell receptors. Another group of adhesins that contributes to UPEC-mediated UTI is autotransporter (AT) proteins. AT proteins possess a range of virulence properties, such as adherence, aggregation, invasion, and biofilm formation. One recently characterized AT protein of UPEC is UpaH, a large adhesin-involved-in-diffuse-adherence (AIDA-I)-type AT protein that contributes to biofilm formation and bladder colonization. In this study we characterized a series of naturally occurring variants of UpaH. We demonstrate that extensive sequence variation exists within the passenger-encoding domain of UpaH variants from different UPEC strains. This sequence variation is associated with functional heterogeneity with respect to the ability of UpaH to mediate biofilm formation. In contrast, all of the UpaH variants examined retained a conserved ability to mediate binding to extracellular matrix (ECM) proteins. Bioinformatic analysis of the UpaH passenger domain identified a conserved region (UpaHCR) and a hydrophobic region (UpaHHR). Deletion of these domains reduced biofilm formation but not the binding to ECM proteins. Despite variation in the upaH sequence, the transcription of upaH was repressed by a conserved mechanism involving the global regulator H-NS, and mutation of the hns gene relieved this repression. Overall, our findings shed new light on the regulation and functions of the UpaH AT protein.
Resumo:
Escherichia coli is the most important etiological agent of urinary tract infections (UTIs). Unlike uropathogenic E. coli, which causes symptomatic infections, asymptomatic bacteriuria (ABU) E. coli strains typically lack essential virulence factors and colonize the bladder in the absence of symptoms. While ABU E. coli can persist in the bladder for long periods of time, little is known about the genetic determinants required for its growth and fitness in urine. To identify such genes, we have employed a transposon mutagenesis approach using the prototypic ABU E. coli strain 83972 and the clinical ABU E. coli strain VR89. Six genes involved in the biosynthesis of various amino acids and nucleobases were identified (carB, argE, argC, purA, metE, and ilvC), and site-specific mutants were subsequently constructed in E. coli 83972 and E. coli VR89 for each of these genes. In all cases, these mutants exhibited reduced growth rates and final cell densities in human urine. The growth defects could be complemented in trans as well as by supplementation with the appropriate amino acid or nucleobase. When assessed in vivo in a mouse model, E. coli 83972carAB and 83972argC showed a significantly reduced competitive advantage in the bladder and/or kidney during coinoculation experiments with the parent strain, whereas 83972metE and 83972ilvC did not. Taken together, our data have identified several biosynthesis pathways as new important fitness factors associated with the growth of ABU E. coli in human urine.