356 resultados para Expression de gène
Resumo:
Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 Å and belonged to space groups P21, P21212 and C2, respectively.
Resumo:
Recently, we inserted the plasmid vector pKK233-2 containing rat GSH S-transferase (GST) 5-5 cDNA into Salmonella typhimurium TA1535 and found that these bacteria [GST 5-5(+)] expressed the protein and produced mutations when ethylene or methylene dihalides were added [Thier, R., Taylor, J. B., Pemble, S. E., Ketterer, B., Persmark, M., Humphreys, W. G., and Guengerich, F. P. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 8576-8580]. After exposure to the known GST 5-5 substrate 1,2-epoxy-3-(4′-nitrophenoxy)propane, the GST 5-5(+) strain showed fewer mutants than the bacteria transfected with the cDNA clone in a reverse orientation [GST 5-5(-)], suggesting a protective role of GST 5-5. However, mutations were considerably enhanced in the GST 5-5(+) strain [as compared to GST 5-5(-)] when 1,2,3,4-diepoxybutane (butadiene diepoxide) or 1,2-epoxy-4-bromobutane was added. The GST 5-5(+) and GST 5-5(-) bacterial stains showed similar responses to 1,2-epoxypropane, 3,4-epoxy-1-butene, and 1,4-dibromobutane. The results suggest that some bifunctional activated butanes are transformed to mutagenic products through GSH conjugation. We also found that the GST 5-5(+) strain showed enhanced mutagenicity with 1,4-dibromo-2,3-epoxybutane, 1,2-epoxy-3-bromopropane (epibromohydrin), and (±)-1,4-dibromo-2,3-dihydroxybutane. The possibility was considered that a 5-membered thialonium ion may be involved in the mutagenicity. Model thialonium compounds were rather stable to hydrolysis in aqueous solution at pH 7.4 and slowly alkylated 4-(4-nitrobenzyl)pyridine. The presence of a hydroxyl group β to the sulfur did not enhance reactivity. Mechanisms involving episulfonium ions are considered more likely. Potential oxidation products of the toxic pesticide 1,2-dibromo-3-chloropropane (DBCP) were also considered in this system. DBCP itself gave rather similar results in the two strains. Others have reported that oxidation of DBCP is required for mutagenicity, along with GST-catalyzed GSH conjugation [Simula, T. P., Glancey, M. J., Söderlund, E. J., Dybing, E., and Wolf, C. R. (1993) Carcinogenesis 14, 2303-2307]. The putative oxidation product 1,2-dibromopropional did not show a difference between the two strains. However, 1,3-dichloroacetone, a model for the putative oxidation product 1-bromo-3-chloroacetone, was considerably more mutagenic in the GST 5-5(+) strain.
Resumo:
Dihalomethanes can produce liver tumors in mice but not in rats, and concern exists about the risk of these compounds to humans. Glutathione (GSH) conjugation of dihalomethanes has been considered to be a critical event in the bioactivation process, and risk assessment is based upon this premise; however, there is little experimental support for this view or information about the basis of genotoxicity. A plasmid vector containing rat GSH S-transferase 5-5 was transfected into the Salmonella typhimurium tester strain TA1535, which then produced active enzyme. The transfected bacteria produced base-pair revertants in the presence of ethylene dihalides or dihalomethanes, in the order CH2Br2 > CH2BrCl > CH2Cl2. However, revertants were not seen when cells were exposed to GSH, CH2Br2, and an amount of purified GSH S-transferase 5-5 (20-fold excess in amount of that expressed within the cells). HCHO, which is an end product of the reaction of GSH with dihalomethanes, also did not produce mutations. S-(1-Acetoxymethyl)GSH was prepared as an analog of the putative S-(1-halomethyl)GSH reactive intermediates. This analog did not produce revertants, consistent with the view that activation of dihalomethanes must occur within the bacteria to cause genetic damage, presenting a model to be considered in studies with mammalian cells. S-(1-Acetoxymethyl)GSH reacted with 2′-deoxyguanosine to yield a major adduct, identified as S-[1-(N2-deoxyguanosinyl)methyl]GSH. Demonstration of the activation of dihalomethanes by this mammalian GSH S-transferase theta class enzyme should be of use in evaluating the risk of these chemicals, particularly in light of reports of the polymorphic expression of a similar activity in humans.
Resumo:
Seeking new biomarkers for epithelial ovarian cancer, the fifth most common cause of death from all cancers in women and the leading cause of death from gynaecological malignancies, we performed a meta-analysis of three independent studies and compared the results in regard to clinicopathological parameters. This analysis revealed that GAS6 was highly expressed in ovarian cancer and therefore was selected as our candidate of choice. GAS6 encodes a secreted protein involved in physiological processes including cell proliferation, chemotaxis, and cell survival. We performed immunohistochemistry on various ovarian cancer tissues and found that GAS6 expression was elevated in tumour tissue samples compared to healthy control samples (P < 0.0001). In addition, GAS6 expression was also higher in tumours from patients with residual disease compared to those without. Our data propose GAS6 as an independent predictor of poor survival, suggesting GAS6, both on the mRNA and on the protein level, as a potential biomarker for ovarian cancer. In clinical practice, the staining of a tumour biopsy for GAS6 may be useful to assess cancer prognosis and/or to monitor disease progression.
Resumo:
Representation of facial expressions using continuous dimensions has shown to be inherently more expressive and psychologically meaningful than using categorized emotions, and thus has gained increasing attention over recent years. Many sub-problems have arisen in this new field that remain only partially understood. A comparison of the regression performance of different texture and geometric features and investigation of the correlations between continuous dimensional axes and basic categorized emotions are two of these. This paper presents empirical studies addressing these problems, and it reports results from an evaluation of different methods for detecting spontaneous facial expressions within the arousal-valence dimensional space (AV). The evaluation compares the performance of texture features (SIFT, Gabor, LBP) against geometric features (FAP-based distances), and the fusion of the two. It also compares the prediction of arousal and valence, obtained using the best fusion method, to the corresponding ground truths. Spatial distribution, shift, similarity, and correlation are considered for the six basic categorized emotions (i.e. anger, disgust, fear, happiness, sadness, surprise). Using the NVIE database, results show that the fusion of LBP and FAP features performs the best. The results from the NVIE and FEEDTUM databases reveal novel findings about the correlations of arousal and valence dimensions to each of six basic emotion categories.
Resumo:
Background: Sexuality is a key component of quality of life and well-being and a need to express one’s sexuality continues into old age. Staff and families in residential aged care facilities often find expressions of sexuality by residents, particularly those living with dementia, challenging and facilities often struggle to address individuals’ needs in this area. This paper describes the development of an assessment tool which enables residential aged care facilities to identify how supportive their organisation is of all residents’ expression of their sexuality, and thereby improve where required. Methods: Multi-phase design using qualitative methods and a Delphi technique. Tool items were derived from the literature and verified by qualitative interviews with aged care facility staff, residents and families. The final item pool was confirmed via a reactive Delphi process. Results: A final item pool of sixty-nine items grouped into seven key areas allows facilities to score their compliance with the areas identified as being supportive of older people’s expression of their sexuality in a residential aged care environment. Conclusions: The sexuality assessment tool (SexAT) guides practice to support the normalization of sexuality in aged care homes and assists facilities to identify where enhancements to the environment, policies, procedures and practices, information and education/training are required. The tool also enables facilities to monitor initiatives in these areas over time.
Resumo:
To identify key regulatory mechanisms in the growth and development of the human endometrium, microarray analysis was performed on uncultured human endometrium collected during menstruation (M) and the late-proliferative (LATE-P)-phase of the menstrual cycle, as well as after 24 h incubation in the presence of oestradiol (17beta-E2). We demonstrate the expression of novel gene transcripts in the human endometrium. i.e. mucin-9, novel oestrogen-responsive gene transcripts, i.e. gelsolin and flotillin-1, and genes known to be expressed in human endometrium but not yet shown to be oestrogen responsive, i.e. connexin-37 and TFF1/pS2. Genes reported to be expressed during the implantation window and implicated in progesterone action, i.e. secretoglobin family 2A, member 2 (mammaglobin) and homeobox-containing proteins, were up-regulated in uncultured LATE-P-phase endometrium compared to M-phase endometrium. Some gene transcripts are regulated directly by 17beta-E2 alone, others are influenced by the in vivo environment as well. These observations emphasise that the regulation of endometrium maturation by oestrogen entails more then just stimulation of cell proliferation.
Resumo:
Objective It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.
Resumo:
Regeneration and growth of the human endometrium after shedding of the functional layer during menstruation depends on an adequate angiogenic response. We analysed the mRNA expression levels of all known vascular endothelial growth factor (VEGF) ligands and receptors in human endometrium collected in the menstrual and proliferative phases of the menstrual cycle. In addition, we evaluated the expression of VEGF-A, VEGF-R2 and NRP-1 at the protein level. Two periods of elevated mRNA expression of ligands and receptors were observed, separated by a distinct drop at cycle days (CDs) 9 and 10. Immunohistochemical staining showed that VEGF and VEGF-R2 were expressed in epithelial, stromal and endothelial cells. NRP-1 was mainly confined to stroma and blood vessels; only in late-proliferative endometrium, epithelial staining was also observed. Except for endothelial VEGF-R2 expression in CDs 6-8, there were no significant differences in the expression of VEGF, VEGF-R2 or NRP-1 in any of the cell compartments. In contrast, VEGF release by cultured human endometrium explants decreased during the proliferative phase. This output was significantly reduced in menstrual and early-proliferative endometrium by estradiol (E2) treatment. Western blot analysis indicated that part of the VEGF-A was trapped in the extracellular matrix (ECM). Changes in VEGF ligands and receptors were associated with elevated expression of the hypoxia markers HIF1 alpha and CA-IX in the menstrual and early proliferative phases. HIF1 alpha was also detected in late-proliferative phase endometrium. Our findings indicate that VEGF-A exerts its actions mostly during the first half of the proliferative phase. Furthermore, VEGF-A production appears to be triggered by hypoxia in the menstrual phase and subsequently suppressed toy estrogen during the late proliferative phase.
Resumo:
To date, research into the biological processes and molecular mechanisms associated with endometrial receptivity and embryo implantation has been a focus of attention, whereas the complex events that occur in the human endometrium during the menstrual and proliferative phase under the influence of estrogen have received little attention. The objective of this review is to provide an update of our current understanding of the actions of estrogen on both human and rodent endometrium, with special emphasis on the regulation of uterine growth and cell proliferation, and the value of global gene expression analysis, in increasing understanding of these processes.
Resumo:
BACKGROUND: The general concept that haemoglobin is only a carrier protein for oxygen and carbon dioxide is challenged since recent studies have shown haemoglobin expression in non-erythroid cells and the protection of haemoglobin against oxidative and nitrosative stress. Using microarrays, we previously showed expression of haemoglobins alpha, beta, delta and gamma and the haeme metabolizing enzyme, haeme oxygenase (HO)-1 in human endometrium. METHODS: Using real-time quantitative PCR, haemoglobin alpha, beta, delta and gamma, and HO-1 mRNA levels were assessed throughout the menstrual cycle (n = 30 women). Haemoglobin and HO-1 protein levels in the human endometrium were assessed with immunohistochemistry. For steroid responsiveness, menstrual and late proliferative-phase endometrial explants were cultured for 24 h in the presence of vehicle (0.1% ethanol), estradiol (17 beta-E-2, 1 nM), progestin (Org 2058, 1 nM) or 17 beta-E-2+Org 2058 (1 nM each). RESULTS: All haemoglobins and the HO-1 were expressed in normal human endometrium. Haemoglobin mRNA and protein expression did not vary significantly during the menstrual cycle. Explant culture with Org 2058 or 17 beta-E-2+Org 2058 increased haemoglobin gamma mRNA expression (P < 0.05). HO-1 mRNA levels, and not protein levels, were significantly higher during the menstrual (M)-phase of the cycle (P < 0.05), and were down-regulated by Org 2058 in M-phase explants and by 17 beta-E-2+Org 2058 in LP-phase explants, versus control (P < 0.05). CONCLUSIONS: The haemoglobin-HO-1 system may be required to ensure adequate regulation of the bioavailability of haeme, iron and oxygen in human endometrium.
Resumo:
INTRODUCTION: The phase III FLEX study (NCT00148798) in advanced non-small-cell lung cancer indicated that the survival benefit associated with the addition of cetuximab to cisplatin and vinorelbine was limited to patients whose tumors expressed high levels of epidermal growth factor receptor (EGFR) (immunohistochemistry score of >/=200; scale 0-300). We assessed whether the treatment effect was also modulated in FLEX study patients by tumor EGFR mutation status. METHODS: A tumor mutation screen of EGFR exons 18 to 21 included 971 of 1125 (86%) FLEX study patients. Treatment outcome in low and high EGFR expression groups was analyzed across efficacy endpoints according to tumor EGFR mutation status. RESULTS: Mutations in EGFR exons 18 to 21 were detected in 133 of 971 tumors (14%), 970 of which were also evaluable for EGFR expression level. The most common mutations were exon 19 deletions and L858R (124 of 133 patients; 93%). In the high EGFR expression group (immunohistochemistry score of >/=200), a survival benefit for the addition of cetuximab to chemotherapy was demonstrated in patients with EGFR wild-type (including T790M mutant) tumors. Although patient numbers were small, those in the high EGFR expression group whose tumors carried EGFR mutations may also have derived a survival benefit from the addition of cetuximab to chemotherapy. Response data suggested a cetuximab benefit in the high EGFR expression group regardless of EGFR mutation status. CONCLUSIONS: The survival benefit associated with the addition of cetuximab to first-line chemotherapy for advanced non-small-cell lung cancer expressing high levels of EGFR is not limited by EGFR mutation status.
Resumo:
Plants are an attractive alternative to conventional expression systems for the production of recombinant proteins and useful biologics, however, the economic viability of plant made proteins is strongly yield dependent. This study aimed to improve transgene expression levels in the plant host Nicotiana benthamiana using the Agroinfiltration transient expression platform. Independent investigation of the physical, chemical and genetic features associated with Agroinfiltration identified factors that improved transformation frequencies, elevated transgene expression levels and ultimately improved protein yield. The major outcome of this research was a novel hyper-expression system for biofarming recombinant proteins in plants.