385 resultados para DISCRETE-SCALE-INVARIANCE
Resumo:
Slippage in the contact roller-races has always played a central role in the field of diagnostics of rolling element bearings. Due to this phenomenon, vibrations triggered by a localized damage are not strictly periodic and therefore not detectable by means of common spectral functions as power spectral density or discrete Fourier transform. Due to the strong second order cyclostationary component, characterizing these signals, techniques such as cyclic coherence, its integrated form and square envelope spectrum have proven to be effective in a wide range of applications. An expert user can easily identify a damage and its location within the bearing components by looking for particular patterns of peaks in the output of the selected cyclostationary tool. These peaks will be found in the neighborhood of specific frequencies, that can be calculated in advance as functions of the geometrical features of the bearing itself. Unfortunately the non-periodicity of the vibration signal is not the only consequence of the slippage: often it also involves a displacement of the damage characteristic peaks from the theoretically expected frequencies. This issue becomes particularly important in the attempt to develop highly automated algorithms for bearing damage recognition, and, in order to correctly set thresholds and tolerances, a quantitative description of the magnitude of the above mentioned deviations is needed. This paper is aimed at identifying the dependency of the deviations on the different operating conditions. This has been possible thanks to an extended experimental activity performed on a full scale bearing test rig, able to reproduce realistically the operating and environmental conditions typical of an industrial high power electric motor and gearbox. The importance of load will be investigated in detail for different bearing damages. Finally some guidelines on how to cope with such deviations will be given, accordingly to the expertise obtained in the experimental activity.
Resumo:
Next Generation Sequencing (NGS) has revolutionised molecular biology, resulting in an explosion of data sets and an increasing role in clinical practice. Such applications necessarily require rapid identification of the organism as a prelude to annotation and further analysis. NGS data consist of a substantial number of short sequence reads, given context through downstream assembly and annotation, a process requiring reads consistent with the assumed species or species group. Highly accurate results have been obtained for restricted sets using SVM classifiers, but such methods are difficult to parallelise and success depends on careful attention to feature selection. This work examines the problem at very large scale, using a mix of synthetic and real data with a view to determining the overall structure of the problem and the effectiveness of parallel ensembles of simpler classifiers (principally random forests) in addressing the challenges of large scale genomics.
Resumo:
Background Parental fever phobia and overuse of antipyretics to control fever is increasing. Little is known about childhood fever management among Arab parents. No scales to measure parents’ fever management practices in Palestine are available. Aims The aims of this study were to translate and examine the psychometric properties of the Arabic version of the Parent Fever Management Scale (PFMS). Methods A standard “forward–backward” procedure was used to translate PFMS into Arabic language. It was then validated on a convenience sample of 402 parents between July and October 2012. Descriptive statistics were used, and instrument reliability was assessed for internal consistency using Cronbach's alpha coefficient. Validity was confirmed using convergent and known group validation. Results Applying the recommended scoring method, the median (interquartile range) score of the PFMS was 26 (23-30). Acceptable internal consistency was found (Cronbach’s alpha = 0.733) and the test–retest reliability value was 0.92 (P < 0.001). The chi-squared (χ2) test showed a significant relationship between PFMS groups and frequent daily administration of antipyretic groups (χ2 = 52.86; P < 0.001). The PFMS sensitivity and specificity were 77.67% and 57.75%, respectively. The positive and negative predictive values were 67.89% and 32.11%, respectively. Conclusions The findings of this validation study indicate that the Arabic version of the PFMS is a reliable and valid measure which can be used as a useful tool for health professionals to identify parents’ fever management practices and thus provide targeted education to reduce the unnecessary burden of care they place on themselves when concerned for a febrile child.
Resumo:
This study decomposed the determinants of environmental quality into scale, technique, and composition effects. We applied a semiparametric method of generalized additive models, which enabled us to use flexible functional forms and include several independent variables in the model. The differences in the technique effect were found to play a crucial role in reducing pollution. We found that the technique effect was sufficient to reduce sulfur dioxide emissions. On the other hand, its effect was not enough to reduce carbon dioxide (CO2) emissions and energy use, except for the case of CO2 emissions in high-income countries.
Resumo:
Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, k -nearest neighbor ( k -NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70 %, sensitivity of 91.11 %, and specificity of 96.30 % using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs.
Resumo:
This thesis addresses the topic of real-time decision making by driverless (autonomous) city vehicles, i.e. their ability to make appropriate driving decisions in non-simplified urban traffic conditions. After addressing the state of research, and explaining the research question, the thesis presents solutions for the subcomponents which are relevant for decision making with respect to information input (World Model), information output (Driving Maneuvers), and the real-time decision making process. TheWorld Model is a software component developed to fulfill the purpose of collecting information from perception and communication subsystems, maintaining an up-to-date view of the vehicle’s environment, and providing the required input information to the Real-Time Decision Making subsystem in a well-defined, and structured way. The real-time decision making process consists of two consecutive stages. While the first decision making stage uses a Petri net to model the safetycritical selection of feasible driving maneuvers, the second stage uses Multiple Criteria Decision Making (MCDM) methods to select the most appropriate driving maneuver, focusing on fulfilling objectives related to efficiency and comfort. The complex task of autonomous driving is subdivided into subtasks, called driving maneuvers, which represent the output (i.e. decision alternatives) of the real-time decision making process. Driving maneuvers are considered as implementations of closed-loop control algorithms, each capable of maneuvering the autonomous vehicle in a specific traffic situation. Experimental tests in both a 3D simulation and real-world experiments attest that the developed approach is suitable to deal with the complexity of real-world urban traffic situations.
An investigation of the validity of the MMPI-2 Response Bias Scale using an analog simulation design
Resumo:
In this paper we describe CubIT, a multi-user presentation and collaboration system installed at the Queensland University of Technology’s (QUT) Cube facility. The ‘Cube’ is an interactive visualisation facility made up of five very large-scale interactive multi-panel wall displays, each consisting of up to twelve 55-inch multi-touch screens (48 screens in total) and massive projected display screens situated above the display panels. The paper outlines the unique design challenges, features, implementation and evaluation of CubIT. The system was built to make the Cube facility accessible to QUT’s academic and student population. CubIT enables users to easily upload and share their own media content, and allows multiple users to simultaneously interact with the Cube’s wall displays. The features of CubIT were implemented via three user interfaces, a multi-touch interface working on the wall displays, a mobile phone and tablet application and a web-based content management system. Each of these interfaces plays a different role and offers different interaction mechanisms. Together they support a wide range of collaborative features including multi-user shared workspaces, drag and drop upload and sharing between users, session management and dynamic state control between different parts of the system. The results of our evaluation study showed that CubIT was successfully used for a variety of tasks, and highlighted challenges with regards to user expectations regarding functionality as well as issues arising from public use.
Resumo:
Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (approx 400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multi-player nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.
Resumo:
PURPOSE The OMNI Perceived Exertion Scale was developed for children to report perceived effort while performing physical activity; however no studies have formally examined age-related differences in validity. This study evaluated the validity of the OMNI-RPE in four age groups performing a range of lifestyle activities. METHODS 206 participants were stratified into four age groups: 6-8 years (n = 42), 9-10 years (n = 46), 11-12 years (n = 47), and 13-15 years (n = 71). Heart rate and VO2 were measured during 11 activity trials ranging in intensity from sedentary to vigorous. After each trial, participants reported effort from the OMNI walk/run scale. Concurrent validity was assessed by calculating within-subject correlations between OMNI ratings and the two physiological indices. RESULTS The average correlation between OMNI ratings and VO2 was 0.67, 0.77, 0.85 and 0.87 for the 6-8, 9-10, 11-12 and 13-15 y age groups, respectively. CONCLUSION The OMNI RPE scale demonstrated fair to good evidence of validity across a range of lifestyle activities among 6-15 year old children. The validity of the scale appears to be developmentally related with RPE reports closely reflecting physiological responses among children older than 8 years.
Resumo:
1.Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management. 2.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required. 3.The ‘Catlin Seaview Survey’, described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6 m2. 4.The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health. 5.Imagery datasets from an initial survey of 500 km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset. 6.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.
Resumo:
Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making
Resumo:
Vision-based place recognition involves recognising familiar places despite changes in environmental conditions or camera viewpoint (pose). Existing training-free methods exhibit excellent invariance to either of these challenges, but not both simultaneously. In this paper, we present a technique for condition-invariant place recognition across large lateral platform pose variance for vehicles or robots travelling along routes. Our approach combines sideways facing cameras with a new multi-scale image comparison technique that generates synthetic views for input into the condition-invariant Sequence Matching Across Route Traversals (SMART) algorithm. We evaluate the system’s performance on multi-lane roads in two different environments across day-night cycles. In the extreme case of day-night place recognition across the entire width of a four-lane-plus-median-strip highway, we demonstrate performance of up to 44% recall at 100% precision, where current state-of-the-art fails.