358 resultados para Comprehensive Osteoarthritis Test
Resumo:
Design deals with improving the lives of people. As such interactions with products, interfaces, and systems should facilitate not only usable and practical concerns but also mediate emotionally meaningful experiences. This paper presents an integrated and comprehensive model of experience, labeled 'Unified User Experience Model', covering the most prominent perspectives from across the design field. It is intended to support designers from different disciplines to consider the complexity of user experience. The vision of the model is to support both the analysis of existing products, interfaces, and systems, as well as the development of new designs that take into account this complexity. In essence, we hope the model can enable designers to develop more marketable, appropriate, and enhanced products to improve experiences and ultimately the lives of people.
Resumo:
Rheological property of F-actin cytoskeleton is significant to the restructuring of cytoskeleton under a variety of cell activities. This study numerically validates the rheological property of F-actin cytoskeleton is not only a result of kinetic energy dissipation of F-actin, but also greatly depends on the configuration remodeling of networks structure. Both filament geometry and crosslinker properties can affect the remodeling of F-actin cytoskeleton. The crosslinker unbinding is found to dissipate energy and induce prominent stress relaxation in the F-actin adjacent to cross-linkages. Coupled with F-actin elasticity, the energy dissipation and stress relaxation are more significant in bundled F-actin networks than in single F-actin networks.
Resumo:
Automotive interactive technologies represent an exemplar challenge for user experience (UX) designers, as the concerns for aesthetics, functionality and usability add up to the compelling issues of safety and cognitive demand. This extended abstract presents a methodology for the user-centred creation and evaluation of novel in-car applications, involving real users in realistic use settings. As a case study, we present the methodologies of an ideation workshop in a simulated environment and the evaluation of six design idea prototypes for in-vehicle head up display (HUD) applications using a semi-naturalistic drive. Both methods rely on video recordings of real traffic situations that the users are familiar with and/or experienced themselves. The extended abstract presents experiences and results from the evaluation and reflection on our methods.
Can larger-bodied cemented femoral components reduce periprosthetic fractures? A biomechanical study
Resumo:
Introduction: The risk for late periprosthetic femoral fractures is higher in patients treated for a neck of femur fracture compared to osteoarthritis. It has been hypothesised that osteopenia and consequent decreased stiffness of the proximal femur are responsible for this. We investigated whether a femoral component with a bigger body would increase the torque to failure in a biaxially loaded composite Sawbone model. Material and methods: A biomechanical bone analogue was used. Two different body sizes (Exeter 44-1 vs 44-4) of a polished tapered cemented femoral stem were implanted by an experienced surgeon in 7 bone analogues each and internally rotated at 40°/s until failure. Torque to fracture and fracture energy were measured using a biaxial materials testing device (Instron 8874, MI, USA). The data were non-parametric and therefore tested with the Mann-Whitney U-test. Results: The median torque to fracture was 156.7 Nm (IQR 19.7) for the 44-1 stem and 237.1 Nm (IQR 52.9) for the 44-4 stem (p=0.001). The median fracture energy was 8.5J (IQR 7.3) for the 44-1 stem and 19.5J (IQR 8.8) for the 44-4 stem (p=0.014). Conclusions: The use of a large body polished tapered cemented stems for neck of femur fractures increases the torque to failure in a biomechanical model and therefore is likely to reduce late periprosthetic fracture risk in this vulnerable cohort.
Resumo:
Many researchers in the field of civil structural health monitoring (SHM) have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Fieldwork has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. Informed by a brief review of the literature, this paper documents the design and proposed test plan of a structurally complex laboratory bridge model that has been specifically designed for the purpose of SHM research. Preliminary results have been presented in the companion paper.
Resumo:
Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.
Resumo:
Emotional and role functioning difficulties are associated with chronic alcohol use and liver disease. Little is known about prospective changes in psychological and psychosocial functioning following orthotopic liver transplantation (OLT) amongst patients with alcoholic liver disease (ALD). We aimed to assess the functioning of this patient group post liver transplantation. Comprehensive psychosocial assessment of depression (Beck Depression Inventory [BDI]), anxiety (State-Trait Anxiety Inventory-Form X [STAI]) and psychosocial adjustment (Psychosocial Adjustment to Illness Scale-Self-Report version [PAIS-SR]) was conducted with 42 ALD patients available for pre and post OLT testing. Dependence severity was assessed by the Brief Michigan Alcoholism Screening Test (bMAST). Significant reductions in average anxiety and depression symptoms were observed 12-months post-OLT. Significant improvements in psychosocial adjustment to illness were also reported. Patients with higher levels of alcohol dependence severity pre transplant assessment improved comparably to those with lower levels of dependence. In summary, the study found that OLT contributed to reducing overall levels of mood and anxiety symptoms in ALD patients, approximating general (non-clinical) population norms. Psychosocial adjustment also improved significantly post liver transplantation.
Resumo:
Purpose/Objectives: To examine and compare the reliability of four body composition methods commonly used in assessing breast cancer survivors. Design: Cross-sectional. Setting: A rehabilitation facility at a university-based comprehensive cancer center in the southeastern United States. Sample: 14 breast cancer survivors aged 40-71 years. Methods: Body fat (BF) percentage was estimated via bioelectric impedance analysis (BIA), air displacement plethysmography (ADP), and skinfold thickness (SKF) using both three- and seven-site algorithms, where reliability of the methods was evaluated by conducting two tests for each method (test 1 and test 2), one immediately after the other. An analysis of variance was used to compare the results of BF percentage among the four methods. Intraclass correlation coefficient (ICC) was used to test the reliability of each method. Main Research Variable: BF percentage. Findings: Significant differences in BF percentage were observed between BIA and all other methods (three-site SKF, p < 0.001; seven-site SKF, p < 0.001; ADP, p = 0.002). No significant differences (p > 0.05) in BF percentage between three-site SKF, seven-site SKF, and ADP were observed. ICCs between test 1 and test 2 for each method were BIA = 1, ADP = 0.98, three-site SKF = 0.99, and seven-site SKF = 0.94. Conclusions: ADP and both SKF methods produce similar estimates of BF percentage in all participants, whereas BIA overestimated BF percentage relative to the other measures. Caution is recommended when using BIA as the body composition method for breast cancer survivors who have completed treatment but are still undergoing adjuvant hormonal therapy. Implications for Nursing: Measurements of body composition can be implemented very easily as part of usual care and should serve as an objective outcome measure for interventions designed to promote healthy behaviors among breast cancer survivors. - See more at: https://onf.ons.org/onf/38/4/comparison-body-composition-assessment-methods-breast-cancer-survivors#sthash.5djfTS1Q.dpuf
Resumo:
Background Dementia is a chronic illness without cure or effective treatment, which results in declining mental and physical function and assistance from others to manage activities of daily living. Many people with dementia live in long term care facilities, yet research into their quality of life (QoL) was rare until the last decade. Previous studies failed to incorporate important variables related to the facility and care provision or to look closely at the daily lives of residents. This paper presents a protocol for a comprehensive, multi-perspective assessment of QoL of residents with dementia living in long term care in Australia. A secondary aim is investigating the effectiveness of self-report instruments for measuring QoL. Methods The study utilizes a descriptive, mixed methods design to examine how facility, care staff, and resident factors impact QoL. Over 500 residents with dementia from a stratified, random sample of 53 facilities are being recruited. A sub-sample of 12 residents is also taking part in qualitative interviews and observations. Conclusions This national study will provide a broad understanding of factors underlying QoL for residents with dementia in long term care. The present study uses a similar methodology to the US-based Collaborative Studies of Long Term Care (CS-LTC) Dementia Care Study, applying it to the Australian setting.
Resumo:
Background The capacity to diagnosys, quantify and evaluate movement beyond the general confines of a clinical environment under effectiveness conditions may alleviate rampant strain on limited, expensive and highly specialized medical resources. An iPhone 4® mounted a three dimensional accelerometer subsystem with highly robust software applications. The present study aimed to evaluate the reliability and concurrent criterion-related validity of the accelerations with an iPhone 4® in an Extended Timed Get Up and Go test. Extended Timed Get Up and Go is a clinical test with that the patient get up from the chair and walking ten meters, turn and coming back to the chair. Methods A repeated measure, cross-sectional, analytical study. Test-retest reliability of the kinematic measurements of the iPhone 4® compared with a standard validated laboratory device. We calculated the Coefficient of Multiple Correlation between the two sensors acceleration signal of each subject, in each sub-stage, in each of the three Extended Timed Get Up and Go test trials. To investigate statistical agreement between the two sensors we used the Bland-Altman method. Results With respect to the analysis of the correlation data in the present work, the Coefficient of Multiple Correlation of the five subjects in their triplicated trials were as follows: in sub-phase Sit to Stand the ranged between r = 0.991 to 0.842; in Gait Go, r = 0.967 to 0.852; in Turn, 0.979 to 0.798; in Gait Come, 0.964 to 0.887; and in Turn to Stand to Sit, 0.992 to 0.877. All the correlations between the sensors were significant (p < 0.001). The Bland-Altman plots obtained showed a solid tendency to stay at close to zero, especially on the y and x-axes, during the five phases of the Extended Timed Get Up and Go test. Conclusions The inertial sensor mounted in the iPhone 4® is sufficiently reliable and accurate to evaluate and identify the kinematic patterns in an Extended Timed Get and Go test. While analysis and interpretation of 3D kinematics data continue to be dauntingly complex, the iPhone 4® makes the task of acquiring the data relatively inexpensive and easy to use.
Resumo:
Background Balance dysfunction is one of the most common problems in people who suffer stroke. To parameterize functional tests standardized by inertial sensors have been promoted in applied medicine. The aim of this study was to compare the kinematic variables of the Functional Reach Test (FRT) obtained by two inertial sensors placed on the trunk and lumbar region between stroke survivors (SS) and healthy older adults (HOA) and to analyze the reliability of the kinematic measurements obtained. Methods Cross-sectional study. Five SS and five HOA over 65. A descriptive analysis of the average range as well as all kinematic variables recorded was developed. The intrasubject and intersubject reliability of the measured variables was directly calculated. Results In the same intervals, the angular displacement was greater in the HOA group; however, they were completed at similar times for both groups, and HOA conducted the test at a higher speed and greater acceleration in each of the intervals. The SS values were higher than HOA values in the maximum and minimum acceleration in the trunk and in the lumbar region. Conclusions The SS show less functional reach, a narrower, slower and less accelerated movement during the FRT execution, but with higher peaks of acceleration and speed when they are compared with HOA.
Resumo:
Switchgrass was treated by 1% (w/w) H₂SO₄in batch tube reactors at temperatures ranging from 140–220°C for up to 60 minutes. In this study, release patterns of glucose, 5-hydroxymethylfurfural (5-HMF), and levulinic acid from switchgrass cellulose were investigated through a mechanistic kinetic model. The predictions were consistent with the measured products of interest when new parameters reflecting the effects of reaction limitations, such as cellulose crystallinity, acid soluble lignin–glucose complex (ASL–glucose) and humins that cannot be quantitatively analyzed, were included. The new mechanistic kinetic model incorporating these parameters simulated the experimental data with R² above 0.97. Results showed that glucose yield was most sensitive to variations in the parameter regarding the cellulose crystallinity at low temperatures (140–180°C), while the impact of crystallinity on the glucose yield became imperceptible at elevated temperatures (200–220 °C). Parameters related to the undesired products (e.g. ASL–glucose and humins) were the most sensitive factors compared with rate constants and other additional parameters in impacting the levulinic acid yield at elevated temperatures (200–220°C), while their impacts were negligible at 140–180°C. These new findings provide a more rational explanation for the kinetic changes in dilute acid pretreatment performance and suggest that the influences of cellulose crystallinity and undesired products including ASL–glucose and humins play key roles in determining the generation of glucose, 5-HMF and levulinic acid from biomass-derived cellulose.