305 resultados para City planning -- Spain
Resumo:
Airports are typical examples of large and complex infrastructure systems. They serve a purpose of not only transporting people around the globe but are central to trade and commerce and, in a nation as large as Australia, an important means to connect people and regions. Reducing uncertainty and managing risk in such systems are not only critical tasks integral to effective management practice but equally important for border protection and national security outcomes. This latter issue has been emphasised on a national level in Australia with a number of recent enquiries taking place, most notably the Wheeler Review1 into aviation security in 2005 and the 2009 National Aviation Policy White Paper2 on the future of aviation in Australia.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision-making system and necessary infrastructure and technologies. In Ubiquitous Eco Cities telecommunication technologies play an important role in monitoring and managing activities via wired and wireless networks. Particularly, technology convergence creates new ways in which information and telecommunication technologies are used and formed the backbone of urban management. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices and provides new opportunities in the management of Ubiquitous Eco Cities. This chapter discusses developments in telecommunication infrastructure and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities.
Resumo:
The first use of computing technologies and the development of land use models in order to support decision-making processes in urban planning date back to as early as mid 20th century. The main thrust of computing applications in urban planning is their contribution to sound decision-making and planning practices. During the last couple of decades many new computing tools and technologies, including geospatial technologies, are designed to enhance planners' capability in dealing with complex urban environments and planning for prosperous and healthy communities. This chapter, therefore, examines the role of information technologies, particularly internet-based geographic information systems, as decision support systems to aid public participatory planning. The chapter discusses challenges and opportunities for the use of internet-based mapping application and tools in collaborative decision-making, and introduces a prototype internet-based geographic information system that is developed to integrate public-oriented interactive decision mechanisms into urban planning practice. This system, referred as the 'Community-based Internet GIS' model, incorporates advanced information technologies, distance learning, sustainable urban development principles and community involvement techniques in decision-making processes, and piloted in Shibuya, Tokyo, Japan.
Resumo:
Social infrastructure and sustainable development represent two distinct but interlinked concepts bounded by a geographic location. For those involved in the planning of a residential development, the notion of social infrastructure is crucial to the building of a healthy community and sustainable environment. This is because social infrastructure is provided in response to the basic needs of communities and to enhance the quality of life, equity, stability and social well being. It also acts as the building block to the enhancement of human and social capital. While acknowledging the different levels of social infrastructure provision from neighbourhood, local, district and sub-regional levels, past evidence has shown that the provision at neighbourhood and local level and are affecting well-being of residents and the community sustainability. With intense physical development taking place in Australia's South East Queensland (SEQ) region, local councils are under immense pressure to provide adequate social and community facilities for their residents. This paper shows how participation-oriented, need-sensitive Integrated Social Infrastructure Planning Guideline is used to offer a solution for the efficient planning and provision of multi-level social infrastructure for the SEQ region. The paper points out to the successful implementation of the guideline for social infrastructure planning in multiple levels of spatial jurisdictions of Australia's fastest growing region.
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.