366 resultados para CARBON CHAINS
Resumo:
We fabricated high performance supercapacitors by using all carbon electrodes, with volume energy in the order of 10−3 Whcm−3, comparable to Li-ion batteries, and power densities in the range of 10 Wcm−3, better than laser-scribed-graphene supercapacitors. All-carbon supercapacitor electrodes are made by solution processing and filtering electrochemically-exfoliated graphene sheets mixed with clusters of spontaneously entangled multiwall carbon nanotubes. We maximize the capacitance by using a 1:1 weight ratio of graphene to multi-wall carbon nanotubes and by controlling their packing in the electrode film so as to maximize accessible surface and further enhance the charge collection. This electrode is transferred onto a plastic-paper-supported double-wall carbon nanotube film used as current collector. These all-carbon thin films are combined with plastic paper and gelled electrolyte to produce solid-state bendable thin film supercapacitors. We assembled supercapacitor cells in series in a planar configuration to increase the operating voltage and find that the shape of our supercapacitor film strongly affects its capacitance. An in-line superposition of rectangular sheets is superior to a cross superposition in maintaining high capacitance when subject to fast charge/discharge cycles. The effect is explained by addressing the mechanism of ion diffusion into stacked graphene sheets.
Resumo:
The use of circular hollow steel members has attracted a great deal of attention during past few years because of having excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, no one can deny the structural deficiency of such structures due to reduction of strength when they are exposed to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural steel members is now very imperative. This paper presents the findings of a research program that was conducted to study the bond durability of carbon fibre-reinforced polymer (CFRP) strengthened steel tubular members under cold weather and tested under four-point bending. Six number of CFRP-strengthened specimens and one unstrengthened specimen were considered in this program. The three specimens having sand blasted surface to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature at least four weeks and cold weather (3 C) for three and six months period of time. Quasi-static tests were then performed on beams to failure under four-point bending. The structural response of each specimen was predicted in terms of failure load, mid-span deflection, composite beam behaviour and failure mode. The research outcomes show that the cold weather immersion had an adverse effect on durability of CFRP-strengthened steel structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in plastic range. The analytical models presented in this study were found to be in good agreement in terms of predicting ultimate load and deflection. Finally, design factors are proposed to address the short-terms durability performance under cold weather.
Resumo:
Carbon nanoscrolls (CNSs) are one of the carbon-based nanomaterials similar to carbon nanotubes (CNTs) but are not widely studied in spite of their great potential applications. Their practical applications are hindered by the challenging fabrication of the CNSs. A physical approach has been proposed recently to fabricate the CNS by rolling up a monolayer graphene nanoribbon (GNR) around a CNT driven by the interaction energy between them. In this study, we perform extensive molecular dynamics (MD) simulations to investigate the various factors that impact the formation of the CNS from GNR. Our simulation results show that the formation of the CNS is sensitive to the length of the CNT and temperature. When the GNR is functionalized with hydrogen, the formation of the CNS is determined by the density and distribution of the hydrogen atoms. Graphyne, the allotrope of graphene, is inferior to graphene in the formation of the CNS due to the weaker bonds and the associated smaller atom density. The mechanism behind the rolling of GNR into CNS lies in the balance between the GNR–CNT van der Waals (vdW) interactions and the strain energy of GNR. The present work reveals new important insights and provides useful guidelines for the fabrication of the CNS.
Resumo:
In recent years, there has been a significant trend toward land acquisition in developing countries, establishing forestry plantations for offsetting carbon pollution generated in the Global North. Badged as “green economic development,” global carbon markets are often championed not only as solutions to climate change, but as drivers of positive development outcomes for local communities. But there is mounting evidence that these corporate land acquisitions for climate change mitigation—including forestry plantations—severely compromise not only local ecologies but also the livelihoods of the some of the world’s most vulnerable people living at subsistence level in rural areas in developing countries.
Resumo:
Digital innovation is transforming the media and entertainment industries. The professionalization of YouTube’s platform is paradigmatic of that change. The 100 original channel initiative launched in late 2011 was designed to transform YouTube’s brand through production of a high volume of quality premium video content that would more deeply engage its audience base and in the process attract big advertisers. An unanticipated by-product has been the rapid growth of a wave of aspiring next-generation digital media companies from within the YouTube ecosystem. Fuelled by early venture capital some have ambitious goals to become global media corporations in the online video space. A number of larger MCNs (Multi-Channel Networks) - BigFrame, Machinima, Fullscreen, AwesomenessTV, Maker Studios , Revision3 and DanceOn - have attracted interest from media incumbents like Warner Brothers, DreamWorks, Discovery, Bertlesmann, Comcast and AMC, and two larger MCNs Alloy and Break Media have merged. This indicates that a shakeout is underway in these new online supply chains, after rapid initial growth. The higher profile MCNs seek to rapidly develop scale economies in online distribution and facilitate audience growth for their member channels, helping channels optimize monetization, develop sustainable business models and to facilitate producer-collaboration within a growing online community of like-minded content creators. Some MCNs already attract far larger online audiences than any national TV network. The speed with which these developments have occurred is reminiscent of the 1910s, when Hollywood studios first emerged and within only a few years replaced the incumbent film studios as the dominant force within the film industry.
Resumo:
Steel hollow sections used in structures such as bridges, buildings and space structures involve different strengthening techniques according to their structural purpose and shape of the structural member. One such technique is external bonding of CFRP sheets to steel tubes. The performance of CFRP strengthening for steel structures has been proven under static loading while limited studies have been conducted on their behaviour under impact loading. In this study, a comprehensive numerical investigation is carried out to evaluate the response of CFRP strengthened steel tubes under dynamic axial impact loading. Impact force, axial deformation impact velocities are studied. The results of the numerical investigations are validated by experimental results. Based on the developed finite element (FE) model several output parameters are discussed. The results show that CFRP wrapping is an effective strengthening technique to increase the axial dynamic load bearing capacity by increasing the stiffness of the steel tube.
Resumo:
Acoustic emission technique has become a significant and powerful structural health monitoring tool for structures. Researches to date have been done on crack location, fatigue crack propagation in materials and severity assessment of failure using acoustic emission technique. Determining severity of failure in steel structures using acoustic emission technique is still a challenge to accurately determine the relationship between the severity of crack propagation and acoustic emission activities. In this study three point bending test on low carbon steel samples along with acoustic emission technique have been used to determine crack propagation and severity. A notch is introduced at the tension face of the loading point to the samples to initiate the crack. The results show that the percentage of load drop of the steel specimen has a reciprocal relationship with the crack opening i.e. crack opening zones are influenced by the loading rate. In post yielding region, common acoustic emission signal parameters such as, signal strength, energy and amplitudes are found to be higher than those at pre-yielding and at yielding.
Resumo:
We report the electropolymerization of poly(3,4-ethylenedioxythiopene) (PEDOT) from an ionic liquid, butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (C4mpyrTFSI) onto flexible carbon cloth electrodes. A continuous, homogeneous and well adhered coating of the individual cloth fibres is achieved by employing a sandwich cell arrangement where the carbon cloth which is soaked with electrolyte is placed between two indium tin oxide electrodes isolated from each other by a battery separator. The resultant PEDOT modified carbon cloth electrode demonstrates excellent activity for the oxygen reduction reaction which is due to the doping level, conductivity and morphology of the PEDOT layer and is also tolerant to the presence of methanol in the electrolyte. This simple approach therefore offers a route to fabricate flexible polymer electrodes that could be used in various electronic applications.
Resumo:
This study provides some preliminary insight in relation to the use of social audits by the global clothing and retail companies that source garment products from developing nations. In the era of globalisation, companies based in developed nations have transferred their production locations to many parts of the developing nations. At the same time, there are widespread global stakeholder concerns about the use of child labour, inadequate health and safety standards and poor working conditions at many of these production locations. Social audits appear to be a tool used by companies to monitor working conditions and to ensure that manufacturing takes place in a humane working environment. The study finds that companies use social auditing in order to maintain their legitimacy within the wider community.
Resumo:
This book covers key discussions involving major US and European multinational companies (MNCs) that source products from suppliers in developing countries. Due to the transfer of production from developed to developing nations, there is an urgent need to establish social compliance as a new form of Corporate Social Responsibility (CSR) and a means by which MNCs can meet expected social standards. The cases described are internationally relevant and can be seen to reflect or represent the behavior of many MNCs and their suppliers in developing nations. The discussion offers essential insights into how different levels of social compliance risk and pressure (including broader stakeholder concerns) move managers to adopt or embrace particular social compliance accounting, reporting and auditing strategies. The book will help readers to understand the major concerns, challenges and dilemmas faced by management in the supply chains of MNCs, and proposes measures that can be taken to resolve those dilemmas. Most importantly, it develops a systematic method of assessing the social compliance performance of suppliers to MNCs. This includes highly detailed accounts of the social compliance performance of suppliers within the clothing industry (in a developing nation) that supply goods to the extensive US and European markets. The book offers a valuable guide, not only for corporate managers but also for practitioners, researchers, academics, and undergraduate and postgraduate business students.
Resumo:
Carbon dioxide (CO2) is considered the most harmful of the greenhouse gases. Despite policy efforts, transport is the only sector experiencing an increase in the level of CO2 emissions and thereby possesses a major threat to sustainable development. In contrast, a reduced level of mobility has been associated with an increasing risk of being socially excluded. However, despite being the two key elements in transport policy, little effort has so far been made to investigate the links between CO2 emissions and social exclusion. This research contributes to this gap by analysing data from 157 weekly activity-travel diaries collected in rural Northern Ireland. CO2 emission levels were calculated using average speed models for different modes of transport. Regression analyses were then conducted to identify the socio-spatial patterns associated with these CO2 emissions, mode choice behaviour, and patterns of participation in activities. This research found that despite emitting a higher level of carbon dioxide, groups in rural areas possess the risk of being socially excluded due to their higher levels of mobility.
Resumo:
The monoanionic ligand 1,1,3,3 tetracyano-2 ethoxypropenide (tcnoet) is reported with its Cu(II)–bpy complex of formula [Cu2(µ-tcnoet)2(tcnoet)2(bpy)2]. The structure has been determined using X-ray diffraction and features an alternating chain with bridging tcnoet ligands. One ligand acts as a bidentate, dinucleating ligand with one short Cu–N and one medium Cu–N bond, whereas the other tcnoet is largely monodentate, albeit with a very weak interdimer Cu–N bond. Despite the arrangement in dinuclear units, further arranged into linear chains through the non-bridging tcnoet ligand, the compound shows no significant magnetic exchange, as deduced from magnetic susceptibility down to 4 K. Ligand-field, IR and EPR spectra in the solid state and in frozen solution are reported and are consistent with the overall structure.
Resumo:
By taking the advantage of the excellent mechanical properties and high specific surface area of graphene oxide (GO) sheets, we develop a simple and effective strategy to improve the interlaminar mechanical properties of carbon fiber reinforced plastic (CFRP) laminates. With the incorporation of graphene oxide reinforced epoxy interleaf into the interface of CFRP laminates, the Mode-I fracture toughness and resistance were greatly increased. The experimental results of double cantilever beam (DCB) tests demonstrated that, with 2 g/m2 addition of GO, the Mode-I fracture toughness and resistance of the specimen increase by 170.8% and 108.0%, respectively, compared to those of the plain specimen. The improvement mechanisms were investigated by the observation of fracture surface with scanning electron microscopies. Moreover, finite element analyses were performed based on the cohesive zone model to verify the experimental fracture toughness and to predict the interfacial tensile strength of CFRP laminates.