331 resultados para vibration measurement
Resumo:
BACKGROUND Measurement of the global burden of disease with disability-adjusted life-years (DALYs) requires disability weights that quantify health losses for all non-fatal consequences of disease and injury. There has been extensive debate about a range of conceptual and methodological issues concerning the definition and measurement of these weights. Our primary objective was a comprehensive re-estimation of disability weights for the Global Burden of Disease Study 2010 through a large-scale empirical investigation in which judgments about health losses associated with many causes of disease and injury were elicited from the general public in diverse communities through a new, standardised approach. METHODS We surveyed respondents in two ways: household surveys of adults aged 18 years or older (face-to-face interviews in Bangladesh, Indonesia, Peru, and Tanzania; telephone interviews in the USA) between Oct 28, 2009, and June 23, 2010; and an open-access web-based survey between July 26, 2010, and May 16, 2011. The surveys used paired comparison questions, in which respondents considered two hypothetical individuals with different, randomly selected health states and indicated which person they regarded as healthier. The web survey added questions about population health equivalence, which compared the overall health benefits of different life-saving or disease-prevention programmes. We analysed paired comparison responses with probit regression analysis on all 220 unique states in the study. We used results from the population health equivalence responses to anchor the results from the paired comparisons on the disability weight scale from 0 (implying no loss of health) to 1 (implying a health loss equivalent to death). Additionally, we compared new disability weights with those used in WHO's most recent update of the Global Burden of Disease Study for 2004. FINDINGS 13,902 individuals participated in household surveys and 16,328 in the web survey. Analysis of paired comparison responses indicated a high degree of consistency across surveys: correlations between individual survey results and results from analysis of the pooled dataset were 0·9 or higher in all surveys except in Bangladesh (r=0·75). Most of the 220 disability weights were located on the mild end of the severity scale, with 58 (26%) having weights below 0·05. Five (11%) states had weights below 0·01, such as mild anaemia, mild hearing or vision loss, and secondary infertility. The health states with the highest disability weights were acute schizophrenia (0·76) and severe multiple sclerosis (0·71). We identified a broad pattern of agreement between the old and new weights (r=0·70), particularly in the moderate-to-severe range. However, in the mild range below 0·2, many states had significantly lower weights in our study than previously. INTERPRETATION This study represents the most extensive empirical effort as yet to measure disability weights. By contrast with the popular hypothesis that disability assessments vary widely across samples with different cultural environments, we have reported strong evidence of highly consistent results.
Resumo:
Hybrid powerplants combining internal combustion engines and electric motor prime movers have been extensively developed for land- and marine-based transport systems. The use of such powerplants in airborne applications has been historically impractical due to energy and power density constraints. Improvements in battery and electric motor technology make aircraft hybrid powerplants feasible. This paper presents a technique for determining the feasibility and mechanical effectiveness of powerplant hybridisation. In this work, a prototype aircraft hybrid powerplant was designed, constructed and tested. It is shown that an additional 35% power can be supplied from the hybrid system with an overall weight penalty of 5%, for a given unmanned aerial system. A flight dynamic model was developed using the AeroSim Blockset in MATLAB Simulink. The results have shown that climb rates can be improved by 56% and endurance increased by 13% when using the hybrid powerplant concept.
Resumo:
The characterisation of facial expression through landmark-based analysis methods such as FACEM (Pilowsky & Katsikitis, 1994) has a variety of uses in psychiatric and psychological research. In these systems, important structural relationships are extracted from images of facial expressions by the analysis of a pre-defined set of feature points. These relationship measures may then be used, for instance, to assess the degree of variability and similarity between different facial expressions of emotion. FaceXpress is a multimedia software suite that provides a generalised workbench for landmark-based facial emotion analysis and stimulus manipulation. It is a flexible tool that is designed to be specialised at runtime by the user. While FaceXpress has been used to implement the FACEM process, it can also be configured to support any other similar, arbitrary system for quantifying human facial emotion. FaceXpress also implements an integrated set of image processing tools and specialised tools for facial expression stimulus production including facial morphing routines and the generation of expression-representative line drawings from photographs.
Resumo:
The use of compact fluorescent lamps (CFLs) in domestic residences has increased rapidly due to their higher energy efficiency and longer life expectancy when compared with traditional incandescent light bulbs. Through measurement of illuminance, actual power and apparent power, the actual efficacy and associated power factor of CFLs are studied in this paper. It is found that for an individual CFL, although its power consumption and lighting output (i.e. luminous flux) may be higher or lower than the stated values provided by the lighting manufacturers, the actual efficacy would most likely be equal to or better than the efficacy calculated from the given rated power and lumen from the manufacturers. The typical power factor for CFLs was 0.63.
Exploring variation in measurement as a foundation for statistical thinking in the elementary school
Resumo:
This study was based on the premise that variation is the foundation of statistics and statistical investigations. The study followed the development of fourth-grade students' understanding of variation through participation in a sequence of two lessons based on measurement. In the first lesson all students measured the arm span of one student, revealing pathways students follow in developing understanding of variation and linear measurement (related to research question 1). In the second lesson each student's arm span was measured once, introducing a different aspect of variation for students to observe and contrast. From this second lesson, students' development of the ability to compare their representations for the two scenarios and explain differences in terms of variation was explored (research question 2). Students' documentation, in both workbook and software formats, enabled us to monitor their engagement and identify their increasing appreciation of the need to observe, represent, and contrast the variation in the data. Following the lessons, a written student assessment was used for judging retention of understanding of variation developed through the lessons and the degree of transfer of understanding to a different scenario (research question 3).
Resumo:
Structural Health Monitoring (SHM) schemes are useful for proper management of the performance of structures and for preventing their catastrophic failures. Vibration based SHM schemes has gained popularity during the past two decades resulting in significant research. It is hence evitable that future SHM schemes will include robust and automated vibration based damage assessment techniques (VBDAT) to detect, localize and quantify damage. In this context, the Damage Index (DI) method which is classified as non-model or output based VBDAT, has the ability to automate the damage assessment process without using a computer or numerical model along with actual measurements. Although damage assessment using DI methods have been able to achieve reasonable success for structures made of homogeneous materials such as steel, the same success level has not been reported with respect to Reinforced Concrete (RC) structures. The complexity of flexural cracks is claimed to be the main reason to hinder the applicability of existing DI methods in RC structures. Past research also indicates that use of a constant baseline throughout the damage assessment process undermines the potential of the Modal Strain Energy based Damage Index (MSEDI). To address this situation, this paper presents a novel method that has been developed as part of a comprehensive research project carried out at Queensland University of Technology, Brisbane, Australia. This novel process, referred to as the baseline updating method, continuously updates the baseline and systematically tracks both crack formation and propagation with the ability to automate the damage assessment process using output only data. The proposed method is illustrated through examples and the results demonstrate the capability of the method to achieve the desired outcomes.
Resumo:
The understanding of the loads generated within the prosthetic leg can aid engineers in the design of components and clinicians in the process of rehabilitation. Traditional methods to assess these loads have relied on inverse dynamics. This indirect method estimates the applied load using video recordings and force-plates located at a distance from the region of interest, such as the base of the residuum. The well-known limitations of this method are related to the accuracy of this recursive model and the experimental conditions required (Frossard et al., 2003). Recent developments in sensors (Frossard et al., 2003) and prosthetic fixation (Brånemark et al., 2000) permit the direct measurement of the loads applied on the residuum of transfemoral amputees. In principle, direct measurement should be an appropriate tool for assessing the accuracy of inverse dynamics. The purpose of this paper is to determine the validity of this assumption. The comparative variable used in this study is the velocity of the relative body center of mass (VCOM(t)). The relativity is used to align the static (w.r.t. position) force plate measurement with the dynamic load cell measurement.
Resumo:
The understanding of the load applied on the residuum through the prosthesis of individuals with transfemoral amputation (TFA) is essential to address a number of concerns that could strongly reduce their quality of life (e.g., residuum skin lesion, prosthesis fitting, alignment). This inner prosthesis loading could be estimated using a typical gait laboratory relying on inverse dynamics equations. Alternative, technological advances proposed over the last decade enabled direct measurement of this kinetic information in a broad variety of situations that could potentially be more relevant in clinical settings. The purposes of this presentation are (A) to review the literature about recent developments in measure and analyses of inner prosthesis loading of TFA, and (B) to extract information that could potentially contribute to a better evidence-based practice.
Resumo:
The demand for an evidence-based clinical practice involving lower limb amputees is increasing. Some of the critical care decisions are related to the loading applied on the residuum partially responsible for comfort and functional outcome. This loading can be assessed using inverse dynamics equations. Typically, this method requires a gait laboratory (e.g., 3D motion analysis system, force-plates). It is mainly suited for the analysis only few steps of walking while being expensive and labour intensive. However, recent scientific and industrial developments demonstrated that discrete and light portable sensors can be placed within the prosthesis to measure accurately the loading during an unlimited number of steps and activities of daily living. Several studies indicated that method based on direct measurements might provide more realistic results. Furthermore, it is a user-friendly method more accessible to clinicians, such as prosthetists. The purpose of this symposium will be to give an overview of these additional opportunities for clinicians to obtain relevant data for evidence-based practice. The three main aims will be: • To present some of the equipment used for direct measurements, • To propose ways to analyse some key data sets, • To give some practical example of data sets for transtibial and transfemoral amputees.
Size-resolved particle distribution and gaseous concentrations by real-world road tunnel measurement
Resumo:
Measurements of aerosol particle number size distributions (15-700 nm), CO and NOx were performed in a bus tunnel, Australia. Daily mean particle size distributions of mixed diesel/CNG (Compressed Natural Gas) buses traffic flow were determined in 4 consecutive measurement days. EFs (Emission Factors) of Particle size distribution of diesel buses and CNG buses were obtained by MLR (Multiple Linear Regression) methods, particle distributions of diesel buses and CNG buses were observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow were decomposed by two log-normal fitting curves for each 30 minutes interval mean scans, all the mix fleet PSD emission can be well fitted by the summation of two log-normal distribution curves, and these were composed of nuclei mode curve and accumulation curve, which were affirmed as the CNG buses and diesel buses PN emission curves respectively. Finally, particle size distributions of diesel buses and CNG buses were quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters were 74.5~87.5nm, geometric standard deviations were 1.89~1.98. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters were 21~24 nm, geometric standard deviations were 1.27~1.31.
Resumo:
AIM To investigate the number of hypertensive patients, the optometrist is able to identify by routinely taking blood pressure (BP) measurements for patients in "at -risk" groups, and to sample patients' opinions regarding in -office BP measurement. Many of the optometrists in Saudi Arabia practice in optical stores. These stores are wide spread, easily accessible and seldom need appointments. The expanding role of the optometrist as a primary health care provider (PHCP) and the increasing global prevalence of hypertension, highlight the need for an integrated approach towards detecting and monitoring hypertension. METHODS Automated BP measurements were made twice (during the same session) at five selected optometry practices using a validated BP monitor (Omron M6) to assess the number of patients with high BP (HBP) - in at -risk groups -visiting the eye clinic routinely. Prior to data collection, practitioners underwent a two-day training workshop by a cardiologist on hypertension and how to obtain accurate BP readings. A protocol for BP measurement was distributed and retained in all participating clinics. The general attitude towards cardiovascular health of 480 patients aged 37.2 (依12.4)y and their opinion towards in-office BP measurement was assessed using a self -administered questionnaire. RESULTS A response rate of 83.6% was obtained for the survey. Ninety -three of the 443 patients (21.0% ) tested for BP in this study had HBP. Of these, (62 subjects) 67.7% were unaware of their HBP status. Thirty of the 105 subjects (28.6%) who had previously been diagnosed with HBP, still had HBP at the time of this study, and only 22 (73.3%) of these patients were on medication. Also, only 25% of the diagnosed hypertensive patients owned a BP monitor. CONCLUSION Taking BP measurements in optometry practices, we were able to identify one previously undiagnosed patient with HBP for every 8 adults tested. We also identified 30 of 105 previously diagnosed patients whose BP was poorly controlled, twenty-two of whom were on medication. The patients who participated in this study were positively disposed toward the routine measurement of BP by optometrists.
Resumo:
Traditionally, it is not easy to carry out tests to identify modal parameters from existing railway bridges because of the testing conditions and complicated nature of civil structures. A six year (2007-2012) research program was conducted to monitor a group of 25 railway bridges. One of the tasks was to devise guidelines for identifying their modal parameters. This paper presents the experience acquired from such identification. The modal analysis of four representative bridges of this group is reported, which include B5, B15, B20 and B58A, crossing the Carajás railway in northern Brazil using three different excitations sources: drop weight, free vibration after train passage, and ambient conditions. To extract the dynamic parameters from the recorded data, Stochastic Subspace Identification and Frequency Domain Decomposition methods were used. Finite-element models were constructed to facilitate the dynamic measurements. The results show good agreement between the measured and computed natural frequencies and mode shapes. The findings provide some guidelines on methods of excitation, record length of time, methods of modal analysis including the use of projected channel and harmonic detection, helping researchers and maintenance teams obtain good dynamic characteristics from measurement data.
Resumo:
It is important to develop reliable finite element models for real structures not only in the design phase but also for the structural health monitoring and structural maintenance purposes. This paper describes the experience of the authors in using ambient vibration model identification techniques together with model updating tools to develop reliable finite element models of real civil engineering structures. Case studies of two real structures are presented in this paper. One is a 10 storey concrete building which is considered as a non-slender structure with complex boundary conditions. The other is a single span concrete foot bridge which is also a relatively inflexible planar structure with complex boundary conditions. Both structures are located at the Queensland University of Technology (QUT) and equipped with continuous structural health monitoring systems.