386 resultados para phasor measurement unit (PMU)
Resumo:
There is currently some debate about whether the energy expenditure of domestic tasks is sufficient to confer health benefits. The aim of this study was therefore to measure the energy cost of five activities commonly undertaken by mothers of young children. Seven women with at least one child younger than five years of age spent 15 minutes in each of the following activities: sitting quietly, vacuum cleaning, washing windows, walking at moderate pace (approx 5km/hour), walking with a stroller and grocery shopping in a super-market. Each of the six 'trials' was completed on the same day, in random order. A carefully calibrated portable gas analyser was used to measure oxygen uptake during each activity, and data were converted to units of energy expenditure (METS). Vacuum cleaning, washing windows and walking with and without a stroller were found to be 'moderate intensity activities' (3 to 6 METs), but supermarket shopping did not reach this criterion. The MET values for these activities were similar to those reported in the Compendium of Physical Activities (Ainsworth et al., 2000). However, the energy expenditures of walking, both with and without a stroller, were higher than those reported in the Compendium. The findings suggest that some of the tasks associated with domestic caring duties are conducted at an intensity which is sufficient to confer some health benefit. Such benefits will only accrue however if the daily duration of these activities is sufficient to meet current guidelines.
Resumo:
Background Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Best Practices Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). Future Directions New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.
Resumo:
Purpose To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.
Resumo:
To date, a wide range of methods has been used to measure physical activity in children and adolescents. These include self-report methods such as questionnaires, activity logs, and diaries as well as objective measures of physical activity such as direct observation, doubly labeled water, heart rate monitoring, accelerometers, and pedometers. The purpose of this review is to overview the methods currently being used to measure physical activity in children and adolescents. For each measurement approach, new developments and/or innovations are identified and discussed. Particular attention is given to the use of accelerometers and the calibration of accelerometer output to units of energy expenditure to developing children.
Resumo:
Second-generation activity monitors have revolutionized the way in which we measure youth physical activity. Use of the monitors avoids the problems associated with self-report methods and allows for the estimation of physical activity patterns over time. This article examines important methodological issues related to the use of activity monitors in children and adolescents.
Resumo:
Background Promoting participation physical activity (PA) is an important means of promoting healthy growth and development in children with cerebral palsy (CP). The ActiGraph is a uniaxial accelerometer that provides a realtime measure of PA intensity, duration and frequency. Its small, light weight design makes it a promising measure of activity in children with CP. To date no study has validated the use of accelerometry as a measure of PA in ambulant adolescents with CP. Objectives To evaluate the validity of the ActiGraph accelerometer for measuring PA intensity in adolescents with CP, using oxygen consumption (VO2), measured using portable indirect calorimetry (Cosmed K4b2), as the criterion measure. Design Validation Study Participants/Setting: Ambulant adolescents with CP aged 10–16 years, GMFCS rating of I-III. The recruitment target is 30 (10 in each GMFCS level). Materials/Methods Participants wore the ActiGraph (counts/min) and a Cosmed K4b2 indirect calorimeter (mL/kg/min) during six activity trials: quiet sitting (QS), comfortable paced walking (CPW), brisk paced walking (BPW), fast paced walking (FPW), a ball-kicking protocol (KP) and a ball-throwing protocol (TP). MET levels (multiples of resting metabolism) for each activity were predicted from ActiGraph counts using the Freedson age-specific equation (Freedson et al. 2005) and compared with actual MET levels measured by the Cosmed. Predicted and measured METs for each activity trial were classified as light (> 1.5 METs and <4.6 METs) or moderate to vigorous intensity (≥ 4.6 METs). Results To date 36 bouts of activity have been completed (6 participants x 6 activities). Mean VO2 increased linearly as the intensity of the walking activity increased (CPW=9.47±2.16, BPW=14.06±4.38, FPW=19.21±5.68 ml/kg/min) and ActiGraph counts reflected this pattern (CPW=1099±574, BPW=2233±797 FPW=4707±1013 counts/min). The throwing protocol recording the lowest VO2 (TP=7.50±3.86 ml/kg/min) and lowest overall counts/min (TP=31±27 counts/min). When each of the 36 bouts were classified as either light or moderate to vigorous intensity using measured VO2 as the criterion measure, the Freedson equation correctly classified 28 from 36 bouts (78%). Conclusion/Clinical Implications These preliminary findings suggest that there is a relationship between the intensity of PA and direct measure of oxygen consumption and that therefore the ActiGraph may be a promising tool for accurately measuring free living PA in the community. Further data collection of the complete sample will enable secondary analysis of the relationship between PA and severity of CP (GMFCS level).
Resumo:
This thesis developed a practical, cost effective, easy-to-use method for measuring the vertical displacements of bridges using fiber Bragg grating (FBG) sensors, which includes the curvature and inclination approaches. These approaches were validated by the numerical simulation tests on a full scale bridge and the laboratory-based tests. In doing so, a novel frictionless FBG inclination sensor with extremely high sensitivity and resolution has also been developed and validated.
Resumo:
This thesis is a comparative investigation of the methodology applied to human skin temperature measurement. The findings of this thesis suggest that clinical and significant differences exist between conductive and infrared devices which are commonly employed in the assessment of human skin temperature. These significant differences could potentially influence the interpretation of results, diagnosis and therefore treatment outcomes for health, clinical and exercise science applications.
Resumo:
We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement. We calculated the temperature increase by using a 1D heat transport equation; comparing the results of the calculation with measured values for the temperature increase, revealed the nonlinear absorption in the Au SF. We employed this deviation from linear behaviour to determine the nonlinear absorption coefficient.
Resumo:
This contribution is focused on plasma-enhanced chemical vapor deposition systems and their unique features that make them particularly attractive for nanofabrication of flat panel display microemitter arrays based on ordered patterns of single-crystalline carbon nanotip structures. The fundamentals of the plasma-based nanofabrication of carbon nanotips and some other important nanofilms and nanostructures are examined. Specific features, challenges, and potential benefits of using the plasma-based systems for relevant nanofabrication processes are analyzed within the framework of the "plasma-building unit" approach that builds up on extensive experimental data on plasma diagnostics and nanofilm/nanostructure characterization, and numerical simulation of the species composition in the ionized gas phase (multicomponent fluid models), ion dynamics and interaction with ordered carbon nanotip patterns, and ab initio computations of chemical structure of single crystalline carbon nanotips. This generic approach is also applicable for nanoscale assembly of various carbon nanostructures, semiconductor quantum dot structures, and nano-crystalline bioceramics. Special attention is paid to most efficient control strategies of the main plasma-generated building units both in the ionized gas phase and on nanostructured deposition surfaces. The issues of tailoring the reactive plasma environments and development of versatile plasma nanofabrication facilities are also discussed.
Resumo:
Firm-customer digital connectedness for effective sensing and responding is a strategic imperative for contemporary competitive firms. This research-in-progress paper conceptualizes and operationalizes the firm-customer mobile digital connectedness of a smart-mobile customer. The empirical investigation focuses on mobile app users and the impact of mobile apps on customer expectations. Based on pilot data collected from 127 customers, we tested hypotheses pertaining to firm-customer mobile digital connectedness and customer expectations. Our test analysis using linear and non-linear postulations reveals those customers raise their expectations as they increase their digital interactions with a firm.
Resumo:
Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.
Resumo:
Combustion sources are well-known sources of electrical ions (Howard, J.B. et al. 1973). Motor vehicles emissions are one of the main sources of ions in urban environments. The presence of charged particles in motor vehicle emissions has been known for many years (Kittelson, 1986; Yu et al, 2004; Jung and Kittelson, 2005). Although these particles are probably charged by the attachment of air ions, there is very little information on the nature, sign and magnitude of the small ions (diameter < 1.6 nm) emitted by motor vehicles and/or present by the sides of roads.
Resumo:
Indians tend to have lower lean body mass than other ethnic groups which increases the risk of chronic diseases. Three complementary studies included in this thesis advanced knowledge on determinants of lean body mass in Indians and the techniques to measure it. The first study examined the determinants of lean body mass in young Indian adults and highlighted the importance of diet and physical activity for development of lean body mass. This study has important implications for policy on prevention of chronic diseases in India. The other two studies helped refinement of the techniques of lean body mass measurement and are expected to facilitate future research in this area. The thesis is presented in the form of publications in high ranking journals.
Resumo:
Superhydrophobicity is directly related to the wettability of the surfaces. Cassie-Baxter state relating to geometrical configuration of solid surfaces is vital to achieving the Superhydrophobicity and to achieve Cassie-Baxter state the following two criteria need to be met: 1) Contact line forces overcome body forces of unsupported droplet weight and 2) The microstructures are tall enough to prevent the liquid that bridges microstructures from touching the base of the microstructures [1]. In this paper we discuss different measurements used to characterise/determine the superhydrophobic surfaces.