399 resultados para error monitoring
Resumo:
This paper firstly presents the benefits and critical challenges on the use of Bluetooth and Wi-Fi for crowd data collection and monitoring. The major challenges include antenna characteristics, environment’s complexity and scanning features. Wi-Fi and Bluetooth are compared in this paper in terms of architecture, discovery time, popularity of use and signal strength. Type of antennas used and the environment’s complexity such as trees for outdoor and partitions for indoor spaces highly affect the scanning range. The aforementioned challenges are empirically evaluated by “real” experiments using Bluetooth and Wi-Fi Scanners. The issues related to the antenna characteristics are also highlighted by experimenting with different antenna types. Novel scanning approaches including Overlapped Zones and Single Point Multi-Range detection methods will be then presented and verified by real-world tests. These novel techniques will be applied for location identification of the MAC IDs captured that can extract more information about people movement dynamics.
Resumo:
Purpose The purpose of this study was to establish the minimal number of days of monitoring required for accelerometers to assess usual physical activity in children. Methods A total of 381 students (189 M, 192 F) wore a CSA 7164 uniaxial accelerometer for seven consecutive days. To examine age-related trends students were grouped as follows: Group I: grades 1-3 (N = 92); Group II: grades 4-6 (N = 98); Group III: grades 7-9 (N = 97); Group IV: grades 10-12 (N = 94). Average daily time spent in moderate-to-vigorous physical activity (MVPA) was calculated from minute-by-minute activity counts using the regression equation developed by Freedson et al. (1997). Results Compared with adolescents in grades 7 to 12, children in grades 1 to 6 exhibited less day-to-day variability in MVPA behavior. Spearman-Brown analysts indicated that between 4 and 5 d of monitoring would be necessary to a achieve a reliability of 0.80 in children, and between 8 and 9 d of monitoring would be necessary to achieve a reliability of 0.80 in adolescents. Within all grade levels, the 7-d monitoring protocol produced acceptable estimates of daily participation in MVPA (R = 0.76 (0.71-0.81) to 0.87 (0.84-0.90)). Compared with weekdays, children exhibited significantly higher levels of MVPA on weekends, whereas adolescents exhibited significantly lower levels of MVPA on weekends. Principal components analysis revealed two distinct time components for MVPA during the day for children (early morning, rest of the day), and three distinct time components for MVPA during the day for adolescents (morning, afternoon, early evening). Conclusions These results indicate that a 7-d monitoring protocol provides reliable estimates of usual physical activity behavior in children and adolescents and accounts for potentially important differences in weekend versus weekday activity behavior as well as differences in activity patterns within a given day.
Resumo:
Public Transport Travel Time Variability (PTTV) is essential for understanding the deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes the key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyzes the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach, using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and analyzing the transit systems.
Resumo:
This chapter investigates a variety of water quality assessment tools for reservoirs with balanced/unbalanced monitoring designs and focuses on providing informative water quality assessments to ensure decision-makers are able to make risk-informed management decisions about reservoir health. In particular, two water quality assessment methods are described: non-compliance (probability of the number of times the indicator exceeds the recommended guideline) and amplitude (degree of departure from the guideline). Strengths and weaknesses of current and alternative water quality methods will be discussed. The proposed methodology is particularly applicable to unbalanced designs with/without missing values and reflects the general conditions and is not swayed too heavily by the occasional extreme value (very high or very low quality). To investigate the issues in greater detail, we use as a case study, a reservoir within South-East Queensland (SEQ), Australia. The purpose here is to obtain an annual score that reflected the overall water quality, temporally, spatially and across water quality indicators for each reservoir.
Resumo:
1. Stream ecosystem health monitoring and reporting need to be developed in the context of an adaptive process that is clearly linked to identified values and objectives, is informed by rigorous science, guides management actions and is responsive to changing perceptions and values of stakeholders. To be effective, monitoring programmes also need to be underpinned by an understanding of the probable causal factors that influence the condition or health of important environmental assets and values. This is often difficult in stream and river ecosystems where multiple stressors, acting at different spatial and temporal scales, interact to affect water quality, biodiversity and ecosystem processes. 2. In this article, we describe the development of a freshwater monitoring programme in South East Queensland, Australia, and how this has been used to report on ecosystem health at a regional scale and to guide investments in catchment protection and rehabilitation. We also discuss some of the emerging science needs to identify the appropriate scale and spatial arrangement of rehabilitation to maximise river ecosystem health outcomes and, at the same time, derive other benefits downstream. 3. An objective process was used to identify potential indicators of stream ecosystem health and then test these across a known catchment land-use disturbance gradient. From the 75 indicators initially tested, 22 from five indicator groups (water quality, ecosystem metabolism, nutrient cycling, invertebrates and fish) responded strongly to the disturbance gradient, and 16 were subsequently recommended for inclusion in the monitoring programme. The freshwater monitoring programme was implemented in 2002, funded by local and State government authorities, and currently involves the assessment of over 120 sites, twice per year. This information, together with data from a similar programme on the region's estuarine and coastal marine waters, forms the basis of an annual report card that is presented in a public ceremony to local politicians and the broader community. 4. Several key lessons from the SEQ Healthy Waterways Programme are likely to be transferable to other regional programmes aimed at improving aquatic ecosystem health, including the importance of a shared common vision, the involvement of committed individuals, a cooperative approach, the need for defensible science and effective communication. 5. Thematic implications: this study highlights the use of conceptual models and objective testing of potential indicators against a known disturbance gradient to develop a freshwater ecosystem health monitoring programme that can diagnose the probable causes of degradation from multiple stressors and identify the appropriate spatial scale for rehabilitation or protection. This approach can lead to more targeted management investments in catchment protection and rehabilitation, greater public confidence that limited funds are being well spent and better outcomes for stream and river ecosystem health.
Resumo:
This thesis developed a practical, cost effective, easy-to-use method for measuring the vertical displacements of bridges using fiber Bragg grating (FBG) sensors, which includes the curvature and inclination approaches. These approaches were validated by the numerical simulation tests on a full scale bridge and the laboratory-based tests. In doing so, a novel frictionless FBG inclination sensor with extremely high sensitivity and resolution has also been developed and validated.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
Motivated by the analysis of the Australian Grain Insect Resistance Database (AGIRD), we develop a Bayesian hurdle modelling approach to assess trends in strong resistance of stored grain insects to phosphine over time. The binary response variable from AGIRD indicating presence or absence of strong resistance is characterized by a majority of absence observations and the hurdle model is a two step approach that is useful when analyzing such a binary response dataset. The proposed hurdle model utilizes Bayesian classification trees to firstly identify covariates and covariate levels pertaining to possible presence or absence of strong resistance. Secondly, generalized additive models (GAMs) with spike and slab priors for variable selection are fitted to the subset of the dataset identified from the Bayesian classification tree indicating possibility of presence of strong resistance. From the GAM we assess trends, biosecurity issues and site specific variables influencing the presence of strong resistance using a variable selection approach. The proposed Bayesian hurdle model is compared to its frequentist counterpart, and also to a naive Bayesian approach which fits a GAM to the entire dataset. The Bayesian hurdle model has the benefit of providing a set of good trees for use in the first step and appears to provide enough flexibility to represent the influence of variables on strong resistance compared to the frequentist model, but also captures the subtle changes in the trend that are missed by the frequentist and naive Bayesian models.
Resumo:
This thesis was a step forward in extracting valuable features from human's movement behaviour in terms of space utilisation based on Media-Access-Control data. This research offered a low-cost and less computational complexity approach compared to existing human's movement tracking methods. This research was successfully applied in QUT's Gardens Point campus and can be scaled to bigger environments and societies. Extractable information from human's movement by this approach can add a significant value to studying human's movement behaviour, enhancing future urban and interior design, improving crowd safety and evacuation plans.
Resumo:
Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.
Resumo:
Wastewater containing human sewage is often discharged with little or no treatment into the Antarctic marine environment. Faecal sterols (primarily coprostanol) in sediments have been used for assessment of human sewage contamination in this environment, but in situ production and indigenous faunal inputs can confound such determinations. Using gas chromatography with mass spectral detection profiles of both C27 and C29 sterols, potential sources of faecal sterols were examined in nearshore marine sediments, encompassing sites proximal and distal to the wastewater outfall at Davis Station. Faeces from indigenous seals and penguins were also examined. Faeces from several indigenous species contained significant quantities of coprostanol but not 24-ethylcoprostanol, which is present in human faeces. In situ coprostanol and 24-ethylcoprostanol production was identified by co-production of their respective epi isomers at sites remote from the wastewat er source and in high total organic matter sediments. A C 29 sterols-based polyphasic likelihood assessment matrix for human sewage contamination is presented, which distinguishes human from local fauna faecal inputs and in situ production in the Antarctic environment. Sewage contamination was detected up to 1.5 km from Davis Station.
Resumo:
Quantum cascade laserabsorption spectroscopy was used to measure the absolute concentration of acetylene in situ during the nanoparticle growth in Ar + C2H2 RF plasmas. It is demonstrated that the nanoparticle growth exhibits a periodical behavior, with the growth cycle period strongly dependent on the initial acetylene concentration in the chamber. Being 300 s at 7.5% of acetylene in the gas mixture, the growth cycle period decreases with the acetylene concentration increasing; the growth eventually disappears when the acetylene concentration exceeds 32%. During the nanoparticle growth, the acetylene concentration is small and does not exceed 4.2% at radio frequency (RF) power of 4 W, and 0.5% at RF power of 20 W. An injection of a single acetylene pulse into the discharge also results in the nanoparticlenucleation and growth. The absorption spectroscopy technique was found to be very effective for the time-resolved measurement of the hydrocarbon content in nanoparticle-generatingplasmas.
Resumo:
In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.
Resumo:
In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta.
Resumo:
Objective To evaluate methods for monitoring monthly aggregated hospital adverse event data that display clustering, non-linear trends and possible autocorrelation. Design Retrospective audit. Setting The Northern Hospital, Melbourne, Australia. Participants 171,059 patients admitted between January 2001 and December 2006. Measurements The analysis is illustrated with 72 months of patient fall injury data using a modified Shewhart U control chart, and charts derived from a quasi-Poisson generalised linear model (GLM) and a generalised additive mixed model (GAMM) that included an approximate upper control limit. Results The data were overdispersed and displayed a downward trend and possible autocorrelation. The downward trend was followed by a predictable period after December 2003. The GLM-estimated incidence rate ratio was 0.98 (95% CI 0.98 to 0.99) per month. The GAMM-fitted count fell from 12.67 (95% CI 10.05 to 15.97) in January 2001 to 5.23 (95% CI 3.82 to 7.15) in December 2006 (p<0.001). The corresponding values for the GLM were 11.9 and 3.94. Residual plots suggested that the GLM underestimated the rate at the beginning and end of the series and overestimated it in the middle. The data suggested a more rapid rate fall before 2004 and a steady state thereafter, a pattern reflected in the GAMM chart. The approximate upper two-sigma equivalent control limit in the GLM and GAMM charts identified 2 months that showed possible special-cause variation. Conclusion Charts based on GAMM analysis are a suitable alternative to Shewhart U control charts with these data.