292 resultados para Traffic clustering
Resumo:
The family of location and scale mixtures of Gaussians has the ability to generate a number of flexible distributional forms. The family nests as particular cases several important asymmetric distributions like the Generalized Hyperbolic distribution. The Generalized Hyperbolic distribution in turn nests many other well known distributions such as the Normal Inverse Gaussian. In a multivariate setting, an extension of the standard location and scale mixture concept is proposed into a so called multiple scaled framework which has the advantage of allowing different tail and skewness behaviours in each dimension with arbitrary correlation between dimensions. Estimation of the parameters is provided via an EM algorithm and extended to cover the case of mixtures of such multiple scaled distributions for application to clustering. Assessments on simulated and real data confirm the gain in degrees of freedom and flexibility in modelling data of varying tail behaviour and directional shape.
Resumo:
We propose a family of multivariate heavy-tailed distributions that allow variable marginal amounts of tailweight. The originality comes from introducing multidimensional instead of univariate scale variables for the mixture of scaled Gaussian family of distributions. In contrast to most existing approaches, the derived distributions can account for a variety of shapes and have a simple tractable form with a closed-form probability density function whatever the dimension. We examine a number of properties of these distributions and illustrate them in the particular case of Pearson type VII and t tails. For these latter cases, we provide maximum likelihood estimation of the parameters and illustrate their modelling flexibility on simulated and real data clustering examples.
Resumo:
The research project developed a quantitative approach to assess the risk to human health from heavy metals and polycyclic aromatic hydrocarbons in urban stormwater based on traffic and land use factors. The research outcomes are expected to strengthen the scientifically robust management and reuse of urban stormwater. The innovative methodology developed can be applied to evaluate human health risk in relation to toxic chemical pollutants in urban stormwater runoff and for the development of effective risk mitigation strategies.
Resumo:
Clustering identities in a video is a useful task to aid in video search, annotation and retrieval, and cast identification. However, reliably clustering faces across multiple videos is challenging task due to variations in the appearance of the faces, as videos are captured in an uncontrolled environment. A person's appearance may vary due to session variations including: lighting and background changes, occlusions, changes in expression and make up. In this paper we propose the novel Local Total Variability Modelling (Local TVM) approach to cluster faces across a news video corpus; and incorporate this into a novel two stage video clustering system. We first cluster faces within a single video using colour, spatial and temporal cues; after which we use face track modelling and hierarchical agglomerative clustering to cluster faces across the entire corpus. We compare different face recognition approaches within this framework. Experiments on a news video database show that the Local TVM technique is able effectively model the session variation observed in the data, resulting in improved clustering performance, with much greater computational efficiency than other methods.
Resumo:
Purpose Road policing is a key method used to improve driver compliance with road laws. However, we have a very limited understanding of the perceptions of young drivers regarding police enforcement of road laws. This paper addresses this gap. Design/Methodology/Approach Within this study 238 young drivers from Queensland, Australia, aged 17-24 years (M = 18, SD = 1.54), with a provisional (intermediate) driver’s licence completed an online survey regarding their perceptions of police enforcement and their driver thrill seeking tendencies. This study considered whether these factors influenced self-reported transient (e.g., travelling speed) and fixed (e.g., blood alcohol concentration) road violations by the young drivers. Findings The results indicate that being detected by police for a traffic offence, and the frequency with which they display P-plates on their vehicle to indicate their licence status, are associated with both self-reported transient and fixed rule violations. Licence type, police avoidance behaviours and driver thrill seeking affected transient rule violations only, while perceptions of police enforcement affected fixed rule violations only. Practical implications This study suggests that police enforcement of young driver violations of traffic laws may not be as effective as expected and that we need to improve the way in which police enforce road laws for young novice drivers. Originality/value: This paper identifies that perceptions of police enforcement by young drivers does not influence all types of road offences.
Resumo:
Objectives In China, “serious road traffic crashes” (SRTCs) are those in which there are 10-30 fatalities, 50-100 serious injuries or a total cost of 50-100 million RMB ($US8-16m), and “particularly serious road traffic crashes” (PSRTCs) are those which are more severe or costly. Due to the large number of fatalities and injuries as well as the negative public reaction they elicit, SRTCs and PSRTCs have become great concerns to China during recent years. The aim of this study is to identify the main factors contributing to these road traffic crashes and to propose preventive measures to reduce their number. Methods 49 contributing factors of the SRTCs and PSRTCs that occurred from 2007 to 2013 were collected from the database “In-depth Investigation and Analysis System for Major Road traffic crashes” (IIASMRTC) and were analyzed through the integrated use of principal component analysis and hierarchical clustering to determine the primary and secondary groups of contributing factors. Results Speeding and overloading of passengers were the primary contributing factors, featuring in up to 66.3% and 32.6% of accidents respectively. Two secondary contributing factors were road-related: lack of or nonstandard roadside safety infrastructure, and slippery roads due to rain, snow or ice. Conclusions The current approach to SRTCs and PSRTCs is focused on the attribution of responsibility and the enforcement of regulations considered relevant to particular SRTCs and PSRTCs. It would be more effective to investigate contributing factors and characteristics of SRTCs and PSRTCs as a whole, to provide adequate information for safety interventions in regions where SRTCs and PSRTCs are more common. In addition to mandating of a driver training program and publicisation of the hazards associated with traffic violations, implementation of speed cameras, speed signs, markings and vehicle-mounted GPS are suggested to reduce speeding of passenger vehicles, while increasing regular checks by traffic police and passenger station staff, and improving transportation management to increase income of contractors and drivers are feasible measures to prevent overloading of people. Other promising measures include regular inspection of roadside safety infrastructure, and improving skid resistance on dangerous road sections in mountainous areas.
Resumo:
Background Traffic offences have been considered an important predictor of crash involvement, and have often been used as a proxy safety variable for crashes. However the association between crashes and offences has never been meta-analysed and the population effect size never established. Research is yet to determine the extent to which this relationship may be spuriously inflated through systematic measurement error, with obvious implications for researchers endeavouring to accurately identify salient factors predictive of crashes. Methodology and Principal Findings Studies yielding a correlation between crashes and traffic offences were collated and a meta-analysis of 144 effects drawn from 99 road safety studies conducted. Potential impact of factors such as age, time period, crash and offence rates, crash severity and data type, sourced from either self-report surveys or archival records, were considered and discussed. After weighting for sample size, an average correlation of r = .18 was observed over the mean time period of 3.2 years. Evidence emerged suggesting the strength of this correlation is decreasing over time. Stronger correlations between crashes and offences were generally found in studies involving younger drivers. Consistent with common method variance effects, a within country analysis found stronger effect sizes in self-reported data even controlling for crash mean. Significance The effectiveness of traffic offences as a proxy for crashes may be limited. Inclusion of elements such as independently validated crash and offence histories or accurate measures of exposure to the road would facilitate a better understanding of the factors that influence crash involvement.