292 resultados para Soil - Classification
Resumo:
An application that translates raw thermal melt curve data into more easily assimilated knowledge is described. This program, called ‘Meltdown’, performs a number of data remediation steps before classifying melt curves and estimating melting temperatures. The final output is a report that summarizes the results of a differential scanning fluorimetry experiment. Meltdown uses a Bayesian classification scheme, enabling reproducible identification of various trends commonly found in DSF datasets. The goal of Meltdown is not to replace human analysis of the raw data, but to provide a sensible interpretation of the data to make this useful experimental technique accessible to naïve users, as well as providing a starting point for detailed analyses by more experienced users.
Resumo:
Intensively managed pastures in subtropical Australia under dairy production are nitrogen (N) loaded agro-ecosystems, with an increased pool of N available for denitrification. The magnitude of denitrification losses and N2:N2O partitioning in these agro-ecosystems is largely unknown, representing a major uncertainty when estimating total N loss and replacement. This study investigated the influence of different soil moisture contents on N2 and N2O emissions from a subtropical dairy pasture in Queensland, Australia. Intact soil cores were incubated over 15 days at 80% and 100% water-filled pore space (WFPS), after the application of 15N labelled nitrate, equivalent to 50 kg N ha−1. This setup enabled the direct quantification of N2 and N2O emissions following fertilisation using the 15N gas flux method. The main product of denitrification in both treatments was N2. N2 emissions exceeded N2O emissions by a factor of 8 ± 1 at 80% WFPS and a factor of 17 ± 2 at 100% WFPS. The total amount of N-N2 lost over the incubation period was 21.27 kg ± 2.10 N2-N ha−1 at 80% WFPS and 25.26 kg ± 2.79 kg ha−1 at 100% WFPS respectively. N2 emissions remained high at 100% WFPS, while related N2O emissions decreased. At 80% WFPS, N2 emissions increased constantly over time while N2O fluxes declined. Consequently, N2/(N2 + N2O) product ratios increased over the incubation period in both treatments. N2/(N2 + N2O) product ratios responded significantly to soil moisture, confirming WFPS as a key driver of denitrification. The substantial amount of fertiliser lost as N2 reveals the agronomic significance of denitrification as a major pathway of N loss for sub-tropical pastures at high WFPS and may explain the low fertiliser N use efficiency observed for these agro-ecosystems.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.
Resumo:
Context: Pheochromocytomas and paragangliomas (PPGLs) are heritable neoplasms that can be classified into gene-expression subtypes corresponding to their underlying specific genetic drivers. Objective: This study aimed to develop a diagnostic and research tool (Pheo-type) capable of classifying PPGL tumors into gene-expression subtypes that could be used to guide and interpret genetic testing, determine surveillance programs, and aid in elucidation of PPGL biology. Design: A compendium of published microarray data representing 205 PPGL tumors was used for the selection of subtype-specific genes that were then translated to the Nanostring gene-expression platform. A support vector machine was trained on the microarray dataset and then tested on an independent Nanostring dataset representing 38 familial and sporadic cases of PPGL of known genotype (RET, NF1, TMEM127, MAX, HRAS, VHL, and SDHx). Different classifier models involving between three and six subtypes were compared for their discrimination potential. Results: A gene set of 46 genes and six endogenous controls was selected representing six known PPGL subtypes; RTK1–3 (RET, NF1, TMEM127, and HRAS), MAX-like, VHL, and SDHx. Of 38 test cases, 34 (90%) were correctly predicted to six subtypes based on the known genotype to gene-expression subtype association. Removal of the RTK2 subtype from training, characterized by an admixture of tumor and normal adrenal cortex, improved the classification accuracy (35/38). Consolidation of RTK and pseudohypoxic PPGL subtypes to four- and then three-class architectures improved the classification accuracy for clinical application. Conclusions: The Pheo-type gene-expression assay is a reliable method for predicting PPGL genotype using routine diagnostic tumor samples.
Resumo:
Acoustics is a rich source of environmental information that can reflect the ecological dynamics. To deal with the escalating acoustic data, a variety of automated classification techniques have been used for acoustic patterns or scene recognition, including urban soundscapes such as streets and restaurants; and natural soundscapes such as raining and thundering. It is common to classify acoustic patterns under the assumption that a single type of soundscapes present in an audio clip. This assumption is reasonable for some carefully selected audios. However, only few experiments have been focused on classifying simultaneous acoustic patterns in long-duration recordings. This paper proposes a binary relevance based multi-label classification approach to recognise simultaneous acoustic patterns in one-minute audio clips. By utilising acoustic indices as global features and multilayer perceptron as a base classifier, we achieve good classification performance on in-the-field data. Compared with single-label classification, multi-label classification approach provides more detailed information about the distributions of various acoustic patterns in long-duration recordings. These results will merit further biodiversity investigations, such as bird species surveys.
Resumo:
Background In order to increase the efficient allocation of soil-transmitted helminth (STH) disease control resources in the Philippines, we aimed to describe for the first time the spatial variation in the prevalence of A. lumbricoides, T. trichiura and hookworm across the country, quantify the association between the physical environment and spatial variation of STH infection and develop predictive risk maps for each infection. Methodology/Principal Findings Data on STH infection from 35,573 individuals across the country were geolocated at the barangay level and included in the analysis. The analysis was stratified geographically in two major regions: 1) Luzon and the Visayas and 2) Mindanao. Bayesian geostatistical models of STH prevalence were developed, including age and sex of individuals and environmental variables (rainfall, land surface temperature and distance to inland water bodies) as predictors, and diagnostic uncertainty was incorporated. The role of environmental variables was different between regions of the Philippines. This analysis revealed that while A. lumbricoides and T. trichiura infections were widespread and highly endemic, hookworm infections were more circumscribed to smaller foci in the Visayas and Mindanao. Conclusions/Significance This analysis revealed significant spatial variation in STH infection prevalence within provinces of the Philippines. This suggests that a spatially targeted approach to STH interventions, including mass drug administration, is warranted. When financially possible, additional STH surveys should be prioritized to high-risk areas identified by our study in Luzon.
Resumo:
The introduction of casemix funding for Australian acute health care services has challenged Social Work to demonstrate clear reporting mechanisms, demonstrate effective practice and to justify interventions provided. The term 'casemix' is used to describe the mix and type of patients treated by a hospital or other health care services. There is wide acknowledgement that the procedure-based system of Diagnosis Related Groupings (DRGs) is grounded in a medical/illness perspective and is unsatisfactory in describing and predicting the activity of Social Work and other allied health professions in health care service delivery. The National Allied Health Casemix Committee was established in 1991 as the peak body to represent allied health professions in matters related to casemix classification. This Committee has pioneered a nationally consistent, patient-centred information system for allied health. This paper describes the classification systems and codes developed for Social Work, which includes a minimum data set, a classification hierarchy, the set of activity (input) codes and 'indicator for intervention' codes. The advantages and limitations of the system are also discussed.