464 resultados para Residential
Resumo:
As the societal awareness on sustainability is gaining momentum worldwide, the higher education sector is expected to take the lead in education, research and the promotion of sustainable development. Universities have the diversity of skills and knowledge to explore new concepts and issues, the academic freedom to offer unbiased observations, and the capacity to engage in experimentation for solutions. There is a global trend that universities have realized and responded to sustainability challenge. By adopting green technologies, buildings on university campuses have the potential to offer highly productive and green environments for a quality learning experience for students, while minimising environmental impacts. Despite the potential benefits and metaphorical link to sustainability, few universities have moved towards implementing Green Roof and Living Wall on campuses widely, which have had more successful applications in commercial and residential buildings. Few past research efforts have examined the fundamental barriers to the implementation of sustainable projects on campuses from organizational level. To address this deficiency, an on-going research project is undertaken by Queensland University of Technology in Australia. The research is aimed at developing a comprehensive framework to facilitate better decision making for the promotion of Green Roof and Living Wall application on campuses. It will explore and highlight organizational factors as well as investigate and emphasize project delivery issues. Also, the critical technical indicators for Green Roof and Living Wall implementation will be identified. The expected outcome of this research has the potential to enhance Green Roof and Living Wall delivery in Australian universities, as a vital step towards realizing sustainability in higher education sectors.
Resumo:
Clinical pathways for end-of-life care management are used widely around the world and have been regarded as the gold standard. The aim of this review was to assess the effects of end-of-life care pathways (EOLCP), compared with usual care (no pathway) or with care guided by a different end-of-life care pathway, across all healthcare settings (e.g. hospitals, residential aged care facilities, community). We searched the Cochrane Register of Controlled Trials (CENTRAL), the Pain, Palliative and Supportive Care Review group specialised register, MEDLINE, EMBASE, review articles and reference lists of relevant articles. The search was carried out in September 2009. All randomised controlled trials (RCTs), quasi-randomised trials or high quality controlled before and after studies comparing use versus non-use of an EOLCP in caring for the dying were considered for inclusion. The search identified 920 potentially relevant titles, but no studies met criteria for inclusion in the review. Without further available evidence, recommendations for the use of end-of-life pathways in caring for the dying cannot be made. There are now recent concerns regarding the big scale roll-out of EOLCP despite the lack of evidence, nurses should report any safety concerns or adverse effects associated with such pathways.
Resumo:
Purpose: The purpose of this paper is to identify changes in bank lending criteria due to the GFC and to explore the associated impacts on new housing supply in Queensland, Australia. Design/methodology/approach: This research involves a survey of each of Australia’s big four banks, as well as two prominent arrangers of development finance. Data on key lending criteria was collected: Pre GFC, during the GFC, and GFC recovery stage. Findings: The GFC has resulted in a retraction of funds available for residential development. The few institutions lending are filtering out only the best credit risks by way of constrictive loan covenants including: low loan to value ratios, high cash equity requirements, regional “no go” zones, and demonstrated borrower track record. The ability of developers to proceed with new housing developments is being constrained by their inability to obtain sufficient finance. Research limitations/implications: This research uses survey data, together with an understanding of the project finance process to extrapolate impacts on the residential development industry across Queensland. No regional or sub-market analysis is included. Future research will include subsequent surveys to track any loosening of credit policies over time and sub-market sector analysis. Practical implications: The inability to obtain project finance is identified as a key constraint to new housing supply. This research will inform policy makers and provide important quantitative evidence of the importance of availability of development finance in the housing supply chain. Social implications: Queensland is facing a supply shortfall, which if not corrected, may lead to upward pressure on house prices and falling housing affordability. Originality/value: There is very little academic research on development funding. This research is unique in linking bank lending criteria to new housing supply and demonstrating the impact on the development industry.
Resumo:
Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.
Resumo:
In recent years, the effect of ions and ultrafine particles on ambient air quality and human health has been well documented, however, knowledge about their sources, concentrations and interactions within different types of urban environments remains limited. This thesis presents the results of numerous field studies aimed at quantifying variations in ion concentration with distance from the source, as well as identifying the dynamics of the particle ionisation processes which lead to the formation of charged particles in the air. In order to select the most appropriate measurement instruments and locations for the studies, a literature review was also conducted on studies that reported ion and ultrafine particle emissions from different sources in a typical urban environment. The initial study involved laboratory experiments on the attachment of ions to aerosols, so as to gain a better understanding of the interaction between ions and particles. This study determined the efficiency of corona ions at charging and removing particles from the air, as a function of different particle number and ion concentrations. The results showed that particle number loss was directly proportional to particle charge concentration, and that higher small ion concentrations led to higher particle deposition rates in all size ranges investigated. Nanoparticles were also observed to decrease with increasing particle charge concentration, due to their higher Brownian mobility and subsequent attachment to charged particles. Given that corona discharge from high voltage powerlines is considered one of the major ion sources in urban areas, a detailed study was then conducted under three parallel overhead powerlines, with a steady wind blowing in a perpendicular direction to the lines. The results showed that large sections of the lines did not produce any corona at all, while strong positive emissions were observed from discrete components such as a particular set of spacers on one of the lines. Measurements were also conducted at eight upwind and downwind points perpendicular to the powerlines, spanning a total distance of about 160m. The maximum positive small and large ion concentrations, and DC electric field were observed at a point 20 m downwind from the lines, with median values of 4.4×103 cm-3, 1.3×103 cm-3 and 530 V m-1, respectively. It was estimated that, at this point, less than 7% of the total number of particles was charged. The electrical parameters decreased steadily with increasing downwind distance from the lines but remained significantly higher than background levels at the limit of the measurements. Moreover, vehicles are one of the most prevalent ion and particle emitting sources in urban environments, and therefore, experiments were also conducted behind a motor vehicle exhaust pipe and near busy motorways, with the aim of quantifying small ion and particle charge concentration, as well as their distribution as a function of distance from the source. The study found that approximately equal numbers of positive and negative ions were observed in the vehicle exhaust plume, as well as near motorways, of which heavy duty vehicles were believed to be the main contributor. In addition, cluster ion concentration was observed to decrease rapidly within the first 10-15 m from the road and ion-ion recombination and ion-aerosol attachment were the most likely cause of ion depletion, rather than dilution and turbulence related processes. In addition to the above-mentioned dominant ion sources, other sources also exist within urban environments where intensive human activities take place. In this part of the study, airborne concentrations of small ions, particles and net particle charge were measured at 32 different outdoor sites in and around Brisbane, Australia, which were classified into seven different groups as follows: park, woodland, city centre, residential, freeway, powerlines and power substation. Whilst the study confirmed that powerlines, power substations and freeways were the main ion sources in an urban environment, it also suggested that not all powerlines emitted ions, only those with discrete corona discharge points. In addition to the main ion sources, higher ion concentrations were also observed environments affected by vehicle traffic and human activities, such as the city centre and residential areas. A considerable number of ions were also observed in a woodland area and it is still unclear if they were emitted directly from the trees, or if they originated from some other local source. Overall, it was found that different types of environments had different types of ion sources, which could be classified as unipolar or bipolar particle sources, as well as ion sources that co-exist with particle sources. In general, fewer small ions were observed at sites with co-existing sources, however particle charge was often higher due to the effect of ion-particle attachment. In summary, this study quantified ion concentrations in typical urban environments, identified major charge sources in urban areas, and determined the spatial dispersion of ions as a function of distance from the source, as well as their controlling factors. The study also presented ion-aerosol attachment efficiencies under high ion concentration conditions, both in the laboratory and in real outdoor environments. The outcomes of these studies addressed the aims of this work and advanced understanding of the charge status of aerosols in the urban environment.
Resumo:
Two decades after its inception, Latent Semantic Analysis(LSA) has become part and parcel of every modern introduction to Information Retrieval. For any tool that matures so quickly, it is important to check its lore and limitations, or else stagnation will set in. We focus here on the three main aspects of LSA that are well accepted, and the gist of which can be summarized as follows: (1) that LSA recovers latent semantic factors underlying the document space, (2) that such can be accomplished through lossy compression of the document space by eliminating lexical noise, and (3) that the latter can best be achieved by Singular Value Decomposition. For each aspect we performed experiments analogous to those reported in the LSA literature and compared the evidence brought to bear in each case. On the negative side, we show that the above claims about LSA are much more limited than commonly believed. Even a simple example may show that LSA does not recover the optimal semantic factors as intended in the pedagogical example used in many LSA publications. Additionally, and remarkably deviating from LSA lore, LSA does not scale up well: the larger the document space, the more unlikely that LSA recovers an optimal set of semantic factors. On the positive side, we describe new algorithms to replace LSA (and more recent alternatives as pLSA, LDA, and kernel methods) by trading its l2 space for an l1 space, thereby guaranteeing an optimal set of semantic factors. These algorithms seem to salvage the spirit of LSA as we think it was initially conceived.
Resumo:
Partition of heavy metals between particulate and dissolve fraction of stormwater primarily depends on the adsorption characteristics of solids particles. Moreover, the bioavailability of heavy metals is also influenced by the adsorption behaviour of solids. However, due to the lack of fundamental knowledge in relation to the heavy metals adsorption processes of road deposited solids, the effectiveness of stormwater management strategies can be limited. The research study focused on the investigation of the physical and chemical parameters of solids on urban road surfaces and, more specifically, on heavy metal adsorption to solids. Due to the complex nature of heavy metal interaction with solids, a substantial database was generated through a series of field investigations and laboratory experiments. The study sites for the build-up pollutant sample collection were selected from four urbanised suburbs located in a major river catchment. Sixteen road sites were selected from these suburbs and represented typical industrial, commercial and residential land uses. Build-up pollutants were collected using a wet and dry vacuum collection technique which was specially designed to improve fine particle collection. Roadside soil samples were also collected from each suburb for comparison with the road surface solids. The collected build-up solids samples were separated into four particle size ranges and tested for a range of physical and chemical parameters. The solids build-up on road surfaces contained a high fraction (70%) of particles smaller than 150ìm, which are favourable for heavy metal adsorption. These solids particles predominantly consist of soil derived minerals which included quartz, albite, microcline, muscovite and chlorite. Additionally, a high percentage of amorphous content was also identified in road deposited solids. In comparing the mineralogical data of surrounding soil and road deposited solids, it was found that about 30% of the solids consisted of particles generated from traffic related activities on road surfaces. Significant difference in mineralogical composition was noted in different particle sizes of build-up solids. Fine solids particles (<150ìm) consisted of a clayey matrix and high amorphous content (in the region of 40%) while coarse particles (>150ìm) consisted of a sandy matrix at all study sites, with about 60% quartz content. Due to these differences in mineralogical components, particles larger than and smaller than 150ìm had significant differences in their specific surface area (SSA) and effective cation exchange capacity (ECEC). These parameters, in turn, exert a significant influence on heavy metal adsorption. Consequently, heavy metal content in >150ìm particles was lower than in the case of fine particles. The particle size range <75ìm had the highest heavy metal content, corresponding with its high clay forming minerals, high organic matter and low quartz content which increased the SSA, ECEC and the presence of Fe, Al and Mn oxides. The clay forming minerals, high organic matter and Fe, Al and Mn oxides create distinct groups of charge sites on solids surfaces and exhibit different adsorption mechanisms and bond strength, between heavy metal elements and charge sites. Therefore, the predominance of these factors in different particle sizes leads to different heavy metal adsorption characteristics. Heavy metals show preference for association with clay forming minerals in fine solids particles, whilst in coarse particles heavy metals preferentially associate with organic matter. Although heavy metal adsorption to amorphous material is very low, the heavy metals embedded in traffic related materials have a potential impact on stormwater quality.Adsorption of heavy metals is not confined to an individual type of charge site in solids, whereas specific heavy metal elements show preference for adsorption to several different types of charge sites in solids. This is attributed to the dearth of preferred binding sites and the inability to reach the preferred binding sites due to competition between different heavy metal species. This confirms that heavy metal adsorption is significantly influenced by the physical and chemical parameters of solids that lead to a heterogeneity of surface charge sites. The research study highlighted the importance of removal of solids particles from stormwater runoff before they enter into receiving waters to reduce the potential risk posed by the bioavailability of heavy metals. The bioavailability of heavy metals not only results from the easily mobile fraction bound to the solids particles, but can also occur as a result of the dissolution of other forms of bonds by chemical changes in stormwater or microbial activity. Due to the diversity in the composition of the different particle sizes of solids and the characteristics and amount of charge sites on the particle surfaces, investigations using bulk solids are not adequate to gain an understanding of the heavy metal adsorption processes of solids particles. Therefore, the investigation of different particle size ranges is recommended for enhancing stormwater quality management practices.
Resumo:
The QUT Team developed an idea for a new residential housing typology that is appropriate for sites where the best views are in the opposing direction to the preferable climatic orientation. The interlocking configuration creates a double height external living space in every apartment, creating further opportunities for cross ventilation and natural daylight. Unlike conventional double loaded housing typologies, the interlocking configuration only requires a continuous public circulation corridor every second level. The cores that service this corridor are separated to either end of the tower and open areas. The configuration of the interlocking apartments creates an interesting composition of solid and void when viewed externally. This undulating facade petternation assists in articulating the large building mass. The project was evaluated by independent consultants and found to be cost effective, and at the same time delivering energy efficient high density liveability. The project was presented to a meeting of the Australian Council on Tall Buildings seminar on 15 September 2010.
Resumo:
The decision of the Court of Appeal in Dunworth v Mirvac Qld Pty Ltd [2011] QCA 200 arose from unusual circumstances associated with the flood in Brisbane earlier this year. Maris Dunworth (‘the buyer’) agreed to purchase a ground floor residential apartment located beside the Brisbane River at Tennyson from Mirvac Queensland Pty Ltd (‘Mirvac’). The original date for completion was 12 May 2009. In earlier proceedings, the buyer had alleged that she had been induced to purchase the apartment by false, misleading and deceptive representations. This claim was dismissed and an order for specific performance was made with a new completion date of 8 February 2011...
Resumo:
This paper explores how the design of creative clusters as a key strategy in promoting the urban creative economy has played out in Shanghai. Creative Clusters in Europe and North America context have emerged ‘organically’. They developed spontaneously in those cities which went through a period of post-industrial decline. Creative Industries grew up in these cities as part of a new urban economy in the wake of old manufacturing industries. Artists and creative entrepreneurs moved into vacant warehouses and factories and began the trend of ‘creative clusters’. Such clusters facilitate the transfer of tacit knowledge through informal learning, the efficient sourcing of skills and information, competition, collaboration and learning, inter-cluster trading and networking. This new urban phenomenon was soon targeted by local economic development policy in charge of re-generating and re-structuralizing industrial activities in cities. Rising interest from real estate and local economic development has led to more and more planned creative clusters. In the aim of catching up with the world’s creative cities, Shanghai has planned over 100 creative clusters since 2005. Along with these officially designed creative clusters, there are organically emerged creative clusters that are much smaller in scale and much more informal in terms of the management. And they emerged originally in old residential areas just outside the CBD and expand to include French concession the most sort after residential area at the edge of CBD. More recently, office buildings within CBD are made available for creative usages. From fringe to CBD, these organic creative clusters provide crucial evidences for the design of creative clusters. This paper will be organized in 2 parts. In the first part, I will present a case study of 8 ‘official’ clusters (title granted by local govenrment) in Shanghai through which I am hoping to develop some key indicators of the success/failure of creative clusters as well as link them with their physical, social and operational efficacies. In the second part, a variety of ‘alternative’ clusters (organicly formed clusters most of which are not recongnized by the government) supplies with us the possibilities of rethinking the so-called ‘cluster development strategy’ in terms of what kind of spaces are appropriate for use by clusters? Who should manage them and in what format? And ultimately what are their relationship with the rest of the city should be defined?
Resumo:
Current urban development in South East Queensland (SEQ) is impacted by a number of factors: growth and sprawl eroding subtropical character and identity; changing demographics and housing needs; lack of developable land; rising transport costs; diminishing fresh water supply; high energy consumption; and generic building designs which ignore local climate, landscape and lifestyle conditions. The Subtropical Row House project sought to research ‘best practice’ planning and design for contemporary and future needs for urban development in SEQ, and stimulate higher-density housing responses that achieve sustainable, low-energy and low water outcomes and support subtropical character and identity by developing a workable new typology for homes that the local market can adopt. The methodology was that of charrette, an established methodology in architecture and design. Four leading Queensland architectural firms were invited to form multidisciplinary creative teams. During the two-day charrette, the teams visited a selected greenfield site, defined the problems and issues, developed ideas and solutions, and benchmarked performance of designs using the Australian Green Building Council’s Pilot Green Star Multi-Unit residential tool. Each of the four resulting designs simultaneously express a positive relationship with climate and place by demonstrating: suitability for the subtropical climate; flexibility for a diversity of households; integrated building/site/vegetation strategies; market appeal to occupants and developers; affordability in operation; constructability by ‘domestic’ builders; and reduced energy, water and wastage. The project was awarded a Regional Commendation by the Australian Institute of Architects.
Resumo:
This thesis presents the outcomes of a comprehensive research study undertaken to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The knowledge created is expected to contribute to a greater understanding of urban stormwater quality and thereby enhance the design of stormwater quality treatment systems. The research study was undertaken based on selected urban catchments in Gold Coast, Australia. The research methodology included field investigations, laboratory testing, computer modelling and data analysis. Both univariate and multivariate data analysis techniques were used to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The rainfall characteristics investigated included average rainfall intensity and rainfall duration whilst catchment characteristics included land use, impervious area percentage, urban form and pervious area location. The catchment scale data for the analysis was obtained from four residential catchments, including rainfall-runoff records, drainage network data, stormwater quality data and land use and land cover data. Pollutants build-up samples were collected from twelve road surfaces in residential, commercial and industrial land use areas. The relationships between rainfall characteristics, catchment characteristics and urban stormwater quality were investigated based on residential catchments and then extended to other land uses. Based on the influence rainfall characteristics exert on urban stormwater quality, rainfall events can be classified into three different types, namely, high average intensity-short duration (Type 1), high average intensity-long duration (Type 2) and low average intensity-long duration (Type 3). This provides an innovative approach to conventional modelling which does not commonly relate stormwater quality to rainfall characteristics. Additionally, it was found that the threshold intensity for pollutant wash-off from urban catchments is much less than for rural catchments. High average intensity-short duration rainfall events are cumulatively responsible for the generation of a major fraction of the annual pollutants load compared to the other rainfall event types. Additionally, rainfall events less than 1 year ARI such as 6- month ARI should be considered for treatment design as they generate a significant fraction of the annual runoff volume and by implication a significant fraction of the pollutants load. This implies that stormwater treatment designs based on larger rainfall events would not be feasible in the context of cost-effectiveness, efficiency in treatment performance and possible savings in land area needed. This also suggests that the simulation of long-term continuous rainfall events for stormwater treatment design may not be needed and that event based simulations would be adequate. The investigations into the relationship between catchment characteristics and urban stormwater quality found that other than conventional catchment characteristics such as land use and impervious area percentage, other catchment characteristics such as urban form and pervious area location also play important roles in influencing urban stormwater quality. These outcomes point to the fact that the conventional modelling approach in the design of stormwater quality treatment systems which is commonly based on land use and impervious area percentage would be inadequate. It was also noted that the small uniformly urbanised areas within a larger mixed catchment produce relatively lower variations in stormwater quality and as expected lower runoff volume with the opposite being the case for large mixed use urbanised catchments. Therefore, a decentralised approach to water quality treatment would be more effective rather than an "end-of-pipe" approach. The investigation of pollutants build-up on different land uses showed that pollutant build-up characteristics vary even within the same land use. Therefore, the conventional approach in stormwater quality modelling, which is based solely on land use, may prove to be inappropriate. Industrial land use has relatively higher variability in maximum pollutant build-up, build-up rate and particle size distribution than the other two land uses. However, commercial and residential land uses had relatively higher variations of nutrients and organic carbon build-up. Additionally, it was found that particle size distribution had a relatively higher variability for all three land uses compared to the other build-up parameters. The high variability in particle size distribution for all land uses illustrate the dissimilarities associated with the fine and coarse particle size fractions even within the same land use and hence the variations in stormwater quality in relation to pollutants adsorbing to different sizes of particles.
Resumo:
Masonry is one of the most ancient construction materials in the World. When compared to other civil engineering practices, masonry construction is highly labour intensive, which can affect the quality and productivity adversely. With a view to improving quality and in light of the limited skilled labour in the recent times several innovative masonry construction methods such as the dry stack and the thin bed masonry have been developed. This paper focuses on the thin bed masonry system, which is used in many parts of Europe. Thin bed masonry system utilises thin layer of polymer modified mortars connecting the accurately dimensioned and/or interlockable units. This assembly process has the potential for automated panelised construction system in the industry setting or being adopted in the site using less skilled labour, without sacrificing the quality. This is because unlike the conventional masonry construction, the thin bed technology uses thinner mortar (or glue) layer which can be controlled easily through some novel methods described in this paper. Structurally, reduction in the thickness of the mortar joint has beneficial effects; for example it increases the compressive strength of masonry; in addition polymer added glue mortar enhances lateral load capacity relative to conventional masonry. This paper reviews the details of the recent research outcomes on the structural characteristics and construction practices of thin bed masonry. Finally the suitability of thin bed masonry in developing countries where masonry remains as the most common material for residential building construction is discussed.
Resumo:
In 2005 17.3% of Australians were aged 60 years and older (Australian Bureau of Statistics). A consequence of this aging population is the increased use of self-contained independent living units (SCILU) in Retirement Villages by older Australians. The retirement village sector has thus become a significant sector within the residential property market. In seeking to determine the impact of tenure type on the desirability of RV living this paper first profiles a typical SCILU in Australia, before explaining and examining the various tenure types offered by the market. This paper concludes that the multiplicity of offerings of the SCILU product with respect to tenure type, when combined with deferred management fees and participation in capital gains/losses, may be contributing to a lack of clarity in what the SCILU product entails and the security of investment it offers. This perception is supported by litigated disputes and may be damaging the reputation, ongoing viability and desirability of SCILUs.