412 resultados para Real samples
Resumo:
Real-time image analysis and classification onboard robotic marine vehicles, such as AUVs, is a key step in the realisation of adaptive mission planning for large-scale habitat mapping in previously unexplored environments. This paper describes a novel technique to train, process, and classify images collected onboard an AUV used in relatively shallow waters with poor visibility and non-uniform lighting. The approach utilises Förstner feature detectors and Laws texture energy masks for image characterisation, and a bag of words approach for feature recognition. To improve classification performance we propose a usefulness gain to learn the importance of each histogram component for each class. Experimental results illustrate the performance of the system in characterisation of a variety of marine habitats and its ability to operate onboard an AUV's main processor suitable for real-time mission planning.
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are compounds that are used as flame retardants. Human exposure is suggested to be via food, dust and air. An assessment of PBDE exposure via indoor environments using samples of air, dust and surface wipes from eight sites in South East Queensland, Australia was conducted. For indoor air, ΣPBDEs ranged from 0.5 -179 pg/m3 for homes and 15 - 487 pg/m3 for offices. In dust, ΣPBDEs ranged from 87 - 733 ng/g dust and 583 - 3070 ng/g dust in homes and offices, respectively. PBDEs were detected on 9 out of 10 surfaces sampled and ranged from non-detectable to 5985 pg/cm2. Overall, the congener profiles for air and dust were dominated by BDE-209. This study demonstrated that PBDEs are ubiquitous in the indoor environments of selected buildings in South East Queensland and suggest the need for detailed assessment of PBDE concentrations using more sites to further investigate the factors influencing PBDE exposure in Australia.
Resumo:
This paper reports a study of ion exchange (IX) as an alternative CSG water treatment to the widely used reverse osmosis (RO) desalination process. An IX pilot plant facility has been constructed and operated using both synthetic and real CSG water samples. Application of appropriate synthetic resin technology has proved the effectiveness of IX processes.
Resumo:
This paper presents the details of experimental studies on the effect of real support conditions on the shear strength of LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. In some applications in the building industry LSBs are used with only one web side plate (WSP) at their supports and are not used with full height web side plates (WSP) at their supports. Past research studies showed that theses real support connections did not provide simply supported conditions. Many studies have been carried out to evaluate the behaviour and design of LSBs with simply supported conditions subject to pure bending and predominant shear actions. To date, however, no investigation has been conducted into the effect of real support conditions on the shear strength of LSBs. Hence detailed experimental studies were undertaken to investigate the shear behaviour and strength of LSBs with real support conditions. A total of 28 experimental tests were conducted as part of the studies. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. It was found that the effect of using one WSP on the shear behaviour of LSB is significant and there is about 25% shear capacity reduction due to the lateral movement of the bottom flange at the supports. Shear capacity of LSB was also found to decrease when full height WSPs were not used. Suitable support connections were developed to improve the shear capacity of LSBs based on test results.
Resumo:
We show, using the PDR1 element of pea, that dispersed repeated sequences of moderate copy number can be used simply and efficiently to generate markers linked to a trait of interest. Inspection of hybridization patterns of repeated sequences to DNA mixtures of pooled genotypes is a sensitive way of detecting such markers. The large number of bands in tracks of digests of these mixtures allows the simultaneous sampling of loci at many places in the genome, and the many unlinked loci serve as internal controls. It is also shown that intensity ratios calculated from these band differences can be used to give a rough estimate of linkage distance.
Resumo:
Plant microRNAs (miRNAs) are a class of endogenous small RNAs that are essential for plant development and survival. They arise from larger precursor RNAs with a characteristic hairpin structure and regulate gene activity by targeting mRNA transcripts for cleavage or translational repression. Efficient and reliable detection and quantification of miRNA expression has become an essential step in understanding their specific roles. The expression levels of miRNAs can vary dramatically between samples and they often escape detection by conventional technologies such as cloning, northern hybridization and microarray analysis. The stem-loop RT-PCR method described here is designed to detect and quantify mature miRNAs in a fast, specific, accurate and reliable manner. First, a miRNA-specific stem-loop RT primer is hybridized to the miRNA and then reverse transcribed. Next, the RT product is amplified and monitored in real time using a miRNA-specific forward primer and the universal reverse primer. This method enables miRNA expression profiling from as little as 10 pg of total RNA and is suitable for high-throughput miRNA expression analysis.
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e., the autonomous vehicles' ability to make appropriate driving decisions in city road traffic situations. The paper explains the overall controls system architecture, the decision making task decomposition, and focuses on how Multiple Criteria Decision Making (MCDM) is used in the process of selecting the most appropriate driving maneuver from the set of feasible ones. Experimental tests show that MCDM is suitable for this new application area.
Resumo:
Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.
Resumo:
This paper elaborates on the Cybercars-2 Wireless Communication Framework for driverless city vehicles, which is used for Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication. The developed framework improves the safety and efficiency of driverless city vehicles. Furthermore, this paper also elaborates on the vehicle control software architecture. On-road tests of both the communication framework and its application for real-time decision making show that the communication framework is reliable and useful for improving the safe operation of driverless city vehicles.
Resumo:
This work elaborates on the topic of decision making for driverless city vehicles, particularly focusing on the aspects on how to develop a reliable approach which meets the requirements of safe city traffic. Decision making in this context refers to the problem of identifying the most appropriate driving maneuver to be performed in a given traffic situation. The overall decision making problem is decomposed into two consecutive stages. The first stage is safety-crucial, representing the decision regarding the set of feasible driving maneuvers. The second stage represents the decision regarding the most appropriate driving maneuver from the set of feasible ones. The developed decision making approach has been implemented in C++ and initially tested in a 3D simulation environment and, thereafter, in real-world experiments. The real-world experiments also included the integration of wireless communication between vehicles.
Resumo:
Combining human-computer interaction and urban informatics, this design research developed and tested novel interfaces offering users real-time feedback on their paper and energy consumption. Findings from deploying these interfaces in both domestic and office environments in Australia, the UK, and Ireland, will innovate future generations of resource monitoring technologies. The study draws conclusions with implications for government policy, the energy industry, and sustainability researchers.
Resumo:
In studies using macroinvertebrates as indicators for monitoring rivers and streams, species level identifications in comparison with lower resolution identifications can have greater information content and result in more reliable site classifications and better capacity to discriminate between sites, yet many such programmes identify specimens to the resolution of family rather than species. This is often because it is cheaper to obtain family level data than species level data. Choice of appropriate taxonomic resolution is a compromise between the cost of obtaining data at high taxonomic resolutions and the loss of information at lower resolutions. Optimum taxonomic resolution should be determined by the information required to address programme objectives. Costs saved in identifying macroinvertebrates to family level may not be justified if family level data can not give the answers required and expending the extra cost to obtain species level data may not be warranted if cheaper family level data retains sufficient information to meet objectives. We investigated the influence of taxonomic resolution and sample quantification (abundance vs. presence/absence) on the representation of aquatic macroinvertebrate species assemblage patterns and species richness estimates. The study was conducted in a physically harsh dryland river system (Condamine-Balonne River system, located in south-western Queensland, Australia), characterised by low macroinvertebrate diversity. Our 29 study sites covered a wide geographic range and a diversity of lotic conditions and this was reflected by differences between sites in macroinvertebrate assemblage composition and richness. The usefulness of expending the extra cost necessary to identify macroinvertebrates to species was quantified via the benefits this higher resolution data offered in its capacity to discriminate between sites and give accurate estimates of site species richness. We found that very little information (<6%) was lost by identifying taxa to family (or genus), as opposed to species, and that quantifying the abundance of taxa provided greater resolution for pattern interpretation than simply noting their presence/absence. Species richness was very well represented by genus, family and order richness, so that each of these could be used as surrogates of species richness if, for example, surveying to identify diversity hot-spots. It is suggested that sharing of common ecological responses among species within higher taxonomic units is the most plausible mechanism for the results. Based on a cost/benefit analysis, family level abundance data is recommended as the best resolution for resolving patterns in macroinvertebrate assemblages in this system. The relevance of these findings are discussed in the context of other low diversity, harsh, dryland river systems.
Resumo:
Tunable synthesis of bimetallic AuxAg1-x alloyed nanoparticles and in situ monitoring of their plasmonic responses is presented. This is a new conceptual approach based on green and energy efficient, reactive, and highly-non-equilibrium microplasma chemistry.