443 resultados para Railroad safety, Bayesian methods, Accident modification factor, Countermeasure selection
Resumo:
Increased crash risk is associated with sedative medications and researchers and health-professionals have called for improvements to medication warnings about driving. The tiered warning system in France since 2005 indicates risk level, uses a color-coded pictogram, and advises the user to seek the advice of a doctor before driving. In Queensland, Australia, the mandatory warning on medications that may cause drowsiness advises the user not to drive or operate machinery if they self-assess that they are affected, and calls attention to possible increased impairment when combined with alcohol. Objectives The reported aims of the study were to establish and compare risk perceptions associated with the Queensland and French warnings among medication users. It was conducted to complement the work of DRUID in reviewing the effectiveness of existing campaigns and practice guidelines. Methods Medication users in France and Queensland were surveyed using warnings about driving from both contexts to compare risk perceptions associated with each label. Both samples were assessed for perceptions of the warning that carried the strongest message of risk. The Queensland study also included perceptions of the likelihood of crash and level of impairment associated with the warning. Results Findings from the French study (N = 75) indicate that when all labels were compared, the majority of respondents perceived the French Level-3 label as the strongest warning about risk concerning driving. Respondents in Queensland had significantly stronger perceptions of potential impairment to driving ability, z = -13.26, p <.000 (n = 325), and potential chance of having a crash, z = -11.87, p < .000 (n = 322), after taking a medication that displayed the strongest French warning, compared with the strongest Queensland warning. Conclusions Evidence suggests that warnings about driving displayed on medications can influence risk perceptions associated with use of medication. Further analyses will determine whether risk perceptions influence compliance with the warnings.
Resumo:
Research is indicating that individuals who present for DUI treatment may have competing substance abuse and mental health needs. This study aimed to examine the extent of such comorbidity issues among a sample of Texas DUI offenders. Method: Records of 36,372 DUI clients and 308,695 non-DUI clients admitted to Texas treatment programs between 2005 and 2008 were obtained from the State's administrative dataset. The data were analysed to identify the relationship between substance use, psychiatric problems, program completion and recidivism rates. Results: Analysis indicated that while non-DUI clients were more likely to present with more severe illicit substance use problems, DUI clients were more likely to have a primary problem with alcohol. Additionally, a cannabis use problem was also found to be significantly associated with DUI recidivism in the last year. In regards to mental health needs, a major finding was that depression was the most common psychiatric condition reported by DUI clients, including those with more than one DUI offence in the past year. This group were also more at risk of being diagnosed with Bipolar Disorder compared to the general population, and such a diagnosis was also associated with an increased likelihood of not completing treatment. Interestingly, female DUI and non-DUI clients were also more likely to be diagnosed with mental health problems compared to males, as well as more likely to be placed on medications at admission and have problems with methamphetamine, cocaine, and opiates. Conclusion: The findings highlight the complex competing needs of some DUI offenders who enter treatment. The results also suggest that there is a need to utilise mental health and substance abuse screening methods to ensure DUI offenders are directed towards appropriate treatment pathways as well as ensure that such interventions adequately cater for complex substance abuse and psychiatric needs.
Resumo:
Objective: To understand the levels of substance abuse and dependence among impaired drivers by comparing the differences in patients in substance abuse treatment programs with and without a past-year DUI arrest based on their primary problem substance at admission (alcohol, cocaine, cannabis, or methamphetamine). Method: Records on 345,067 admissions to Texas treatment programs between 2005 and 2008 have been analyzed for differences in demographic characteristics, levels of severity, and mental health problems at admission, treatment completion, and 90-day follow-up. Methods will include t-tests,??, and multivariate logistic regression. Results: The analysis found that DUI arrestees with a primary problem with alcohol were less impaired than non-DUI alcohol patients, had fewer mental health problems, and were more likely to complete treatment. DUI arrestees with a primary problem with cannabis were more impaired than non-DUI cannabis patients and there was no difference in treatment completion. DUI arrestees with a primary problem with cocaine were less impaired and more likely to complete treatment than other cocaine patients, and there was little difference in levels of mental health problems. DUI arrestees with a primary problem with methamphetamine were more similar to methamphetamine non-arrestees, with no difference in mental health problems and treatment completion. Conclusions: This study provides evidence of the extent of abuse and dependence among DUI arrestees and their need for treatment for their alcohol and drug problems in order to decrease recidivism. Treatment patients with past-year DUI arrests had good treatment outcomes but closer supervision during 90 day follow-up after treatment can lead to even better long-term outcomes, including reduced recidivism. Information will be provided on the latest treatment methodologies, including medication assisted therapies and screening and brief interventions, and ways impaired driving programs and substance dependence programs can be integrated to benefit the driver and society.
Resumo:
Aims: Driving Under the Influence (DUI) enforcement can be a broad screening mechanism for alcohol and other drug problems. The current response to DUI is focused on using mechanical means to prevent inebriated persons from driving, with little attention the underlying substance abuse problems. ---------- Methods: This is a secondary analysis of an administrative dataset of over 345,000 individuals who entered Texas substance abuse treatment between 2005 and 2008. Of these, 36,372 were either on DUI probation, referred to treatment by probation, or had a DUI arrest in the past year. The DUI offenders were compared on demographic characteristics, substance use patterns, and levels of impairment with those who were not DUI offenders and first DUI offenders were compared with those with more than one past-year offense. T tests and chi square tests were used to determine significance. ---------- Results: DUI offenders were more likely to be employed, to have a problem with alcohol, to report more past-year arrests for any offense, to be older, and to have used alcohol and drugs longer than the non-DUI clients who reported higher ASI scores and were more likely to use daily. Those with one past-year DUI arrest were more likely to have problems with drugs other than alcohol and were less impaired than those with two or more arrests based on their ASI scores and daily use. Non-DUI clients reported higher levels of mood disorders than DUIs but there was no difference in their diagnosis of anxiety. Similar findings were found between those with one or multiple DUI arrests. ----------Conclusion: Although first-time DUIs were not as impaired as non-DUI clients, their levels of impairment were sufficient to cause treatment. Screening and brief intervention at arrest for all DUI offenders and treatment in combination with abstinence monitoring could decrease future recidivism.
Resumo:
This paper sets out to examine from published literature and crash data analyses whether alcohol in bicycle crashes is an issue about which we should be concerned. It discusses factors that have the potential to increase the number of bicycle crashes in which alcohol is involved (such growth in the size and diversity of the cyclist population, and balance and coordination demands) and factors which may reduce the importance of alcohol in bicycle crashes (such as time of data factors and child riders). It also examines data availability issues that contribute to difficulties in determining the true magnitude of the issue. Methods: This paper reviews previous research and reports analyses of data from Queensland, Australia, that examine the role of alcohol in Police-reported road crashes. In Queensland it is an offence to ride a bicycle or drive a motor vehicle with a BAC exceeding 0.05% (or lower for novice and professional drivers). Results: In the five years 2003-2007, alcohol was reported as involved in 165 bicycle crashes (4%). The bicycle rider was coded as “under the influence” or “over the prescribed BAC limit” in 15 were single unit crashes (12%). In multi-vehicle bicycle crashes, alcohol involvement was reported for 16 cyclists (0.4%) and 110 operators of other vehicles (3%). Additional analyses including characteristics of the cyclist crashes involving alcohol and the importance of missing data will be discussed in the paper. Conclusion: The increase in participation in cycling and the vulnerability of cyclists to injuries support the need to examine the role of alcohol in bicycle crashes. Current data suggest that alcohol on the part of the vehicle driver is a larger concern than alcohol on the part of the cyclist, but improvements in data collection are needed before more precise conclusions can be drawn.
Resumo:
This study investigated, validated, and applied the optimum conditions for a modified microwave assisted digestion method for subsequent ICP-MS determination of mercury, cadmium, and lead in two matrices relevant to water quality, that is, sediment and fish. Three different combinations of power, pressure, and time conditions for microwave-assisted digestion were tested, using two certified reference materials representing the two matrices, to determine the optimum set of conditions. Validation of the optimized method indicated better recovery of the studied metals compared to standard methods. The validated method was applied to sediment and fish samples collected from Agusan River and one of its tributaries, located in Eastern Mindanao, Philippines. The metal concentrations in sediment ranged from 2.85 to 341.06 mg/kg for Hg, 0.05 to 44.46 mg/kg for Cd and 2.20 to 1256.16 mg/kg for Pb. The results indicate that the concentrations of these metals in the sediments rapidly decrease with distance downstream from sites of contamination. In the selected fish species, the metals were detected but at levels that are considered safe for human consumption, with concentrations of 2.14 to 6.82 μg/kg for Hg, 0.035 to 0.068 μg/kg for Cd, and 0.019 to 0.529 μg/kg for Pb.
Resumo:
Work-related driving crashes are the most common cause of work-related injury, death, and absence from work in Australia and overseas. Surprisingly however, limited attention has been given to initiatives designed to improve safety outcomes in the work-related driving setting. This research paper will present preliminary findings from a research project designed to examine the effects of increasing work-related driving safety discussions on the relationship between drivers and their supervisors and motivations to drive safely. The research project was conducted within a community nursing population, where 112 drivers were matched with 23 supervisors. To establish discussions between supervisors and drivers, safety sessions were conducted on a monthly basis with supervisors of the drivers. At these sessions, the researcher presented context specific, audio-based anti-speeding messages. Throughout the course of the intervention and following each of these safety sessions, supervisors were instructed to ensure that all drivers within their workgroup listened to each particular anti-speeding message at least once a fortnight. In addition to the message, supervisors were also encouraged to frequently promote the anti-speeding message through any contact they had with their drivers (i.e., face to face, email, SMS text, and/or paper based contact). Fortnightly discussions were subsequently held with drivers, whereby the researchers ascertained the number and type of discussions supervisors engaged in with their drivers. These discussions also assessed drivers’ perceptions of the group safety climate. In addition to the fortnightly discussion, drivers completed a daily speed reporting form which assessed the proportion of their driving day spent knowingly over the speed limit. As predicted, the results found that if supervisors reported a good safety climate prior to the intervention, increasing the number of safety discussions resulted in drivers reporting a high quality relationship (i.e., leader-member exchange) with their supervisor post intervention. In addition, if drivers reported a good safety climate, increasing the number of discussions resulted in increased motivation to drive safely post intervention. Motivations to drive safely prior to the intervention also predicted self-reported speeding over the subsequent three months of reporting. These results suggest safety discussions play an important role in improving the exchange between supervisors and their drivers and drivers’ subsequent motivation to drive safely and, in turn, self reported speeding.
Resumo:
This study aimed to determine whether two brief, low cost interventions would reduce young drivers’ optimism bias for their driving skills and accident risk perceptions. This tendency for such drivers to perceive themselves as more skilful and less prone to driving accidents than their peers may lead to less engagement in precautionary driving behaviours and a greater engagement in more dangerous driving behaviour. 243 young drivers (aged 17 - 25 years) were randomly allocated to one of three groups: accountability, insight or control. All participants provided both overall and specific situation ratings of their driving skills and accident risk relative to a typical young driver. Prior to completing the questionnaire, those in the accountability condition were first advised that their driving skills and accident risk would be later assessed via a driving simulator. Those in the insight condition first underwent a difficult computer-based hazard perception task designed to provide participants with insight into their potential limitations when responding to hazards in difficult and unpredictable driving situations. Participants in the control condition completed only the questionnaire. Results showed that the accountability manipulation was effective in reducing optimism bias in terms of participants’ comparative ratings of their accident risk in specific situations, though only for less experienced drivers. In contrast, among more experienced males, participants in the insight condition showed greater optimism bias for overall accident risk than their counterparts in the accountability or control groups. There were no effects of the manipulations on drivers’ skills ratings. The differential effects of the two types of manipulations on optimism bias relating to one’s accident risk in different subgroups of the young driver sample highlight the importance of targeting interventions for different levels of experience. Accountability interventions may be beneficial for less experienced young drivers but the results suggest exercising caution with the use of insight type interventions, particularly hazard perception style tasks, for more experienced young drivers typically still in the provisional stage of graduated licensing systems.
Resumo:
View from the Construction sector as to the need to improve OHS culture What were the goals and the outcomes of the CRC Construction Innovation research Leadership behaviours to drive OHS culture change in industry What benefits to the construction sector have occurred through these initiatives What we have learnt on the journey
Resumo:
Background: It remains unclear whether it is possible to develop a spatiotemporal epidemic prediction model for cryptosporidiosis disease. This paper examined the impact of social economic and weather factors on cryptosporidiosis and explored the possibility of developing such a model using social economic and weather data in Queensland, Australia. ----- ----- Methods: Data on weather variables, notified cryptosporidiosis cases and social economic factors in Queensland were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Three-stage spatiotemporal classification and regression tree (CART) models were developed to examine the association between social economic and weather factors and monthly incidence of cryptosporidiosis in Queensland, Australia. The spatiotemporal CART model was used for predicting the outbreak of cryptosporidiosis in Queensland, Australia. ----- ----- Results: The results of the classification tree model (with incidence rates defined as binary presence/absence) showed that there was an 87% chance of an occurrence of cryptosporidiosis in a local government area (LGA) if the socio-economic index for the area (SEIFA) exceeded 1021, while the results of regression tree model (based on non-zero incidence rates) show when SEIFA was between 892 and 945, and temperature exceeded 32°C, the relative risk (RR) of cryptosporidiosis was 3.9 (mean morbidity: 390.6/100,000, standard deviation (SD): 310.5), compared to monthly average incidence of cryptosporidiosis. When SEIFA was less than 892 the RR of cryptosporidiosis was 4.3 (mean morbidity: 426.8/100,000, SD: 319.2). A prediction map for the cryptosporidiosis outbreak was made according to the outputs of spatiotemporal CART models. ----- ----- Conclusions: The results of this study suggest that spatiotemporal CART models based on social economic and weather variables can be used for predicting the outbreak of cryptosporidiosis in Queensland, Australia.
Resumo:
The city of Scottsdale Arizona implemented the first fixed photo Speed Enforcement camera demonstration Program (SEP) on a US freeway in 2006. A comprehensive before-and-after analysis of the impact of the SEP on safety revealed significant reductions in crash frequency and severity, which indicates that the SEP is a promising countermeasure for improving safety. However, there is often a trade off between safety and mobility when safety investments are considered. As a result, identifying safety countermeasures that both improve safety and reduce Travel Time Variability (TTV) is a desirable goal for traffic safety engineers. This paper reports on the analysis of the mobility impacts of the SEP by simulating the traffic network with and without the SEP, calibrated to real world conditions. The simulation results show that the SEP decreased the TTV: the risk of unreliable travel was at least 23% higher in the ‘without SEP’ scenario than in the ‘with SEP’ scenario. In addition, the total Travel Time Savings (TTS) from the SEP was estimated to be at least ‘569 vehicle-hours/year.’ Consequently, the SEP is an efficient countermeasure not only for reducing crashes but also for improving mobility through TTS and reduced TTV.
Resumo:
We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms by using indirect inference. ABC methods are useful for posterior inference in the presence of an intractable likelihood function. In the indirect inference approach to ABC the parameters of an auxiliary model fitted to the data become the summary statistics. Although applicable to any ABC technique, we embed this approach within a sequential Monte Carlo algorithm that is completely adaptive and requires very little tuning. This methodological development was motivated by an application involving data on macroparasite population evolution modelled by a trivariate stochastic process for which there is no tractable likelihood function. The auxiliary model here is based on a beta–binomial distribution. The main objective of the analysis is to determine which parameters of the stochastic model are estimable from the observed data on mature parasite worms.
Resumo:
Plant biosecurity requires statistical tools to interpret field surveillance data in order to manage pest incursions that threaten crop production and trade. Ultimately, management decisions need to be based on the probability that an area is infested or free of a pest. Current informal approaches to delimiting pest extent rely upon expert ecological interpretation of presence / absence data over space and time. Hierarchical Bayesian models provide a cohesive statistical framework that can formally integrate the available information on both pest ecology and data. The overarching method involves constructing an observation model for the surveillance data, conditional on the hidden extent of the pest and uncertain detection sensitivity. The extent of the pest is then modelled as a dynamic invasion process that includes uncertainty in ecological parameters. Modelling approaches to assimilate this information are explored through case studies on spiralling whitefly, Aleurodicus dispersus and red banded mango caterpillar, Deanolis sublimbalis. Markov chain Monte Carlo simulation is used to estimate the probable extent of pests, given the observation and process model conditioned by surveillance data. Statistical methods, based on time-to-event models, are developed to apply hierarchical Bayesian models to early detection programs and to demonstrate area freedom from pests. The value of early detection surveillance programs is demonstrated through an application to interpret surveillance data for exotic plant pests with uncertain spread rates. The model suggests that typical early detection programs provide a moderate reduction in the probability of an area being infested but a dramatic reduction in the expected area of incursions at a given time. Estimates of spiralling whitefly extent are examined at local, district and state-wide scales. The local model estimates the rate of natural spread and the influence of host architecture, host suitability and inspector efficiency. These parameter estimates can support the development of robust surveillance programs. Hierarchical Bayesian models for the human-mediated spread of spiralling whitefly are developed for the colonisation of discrete cells connected by a modified gravity model. By estimating dispersal parameters, the model can be used to predict the extent of the pest over time. An extended model predicts the climate restricted distribution of the pest in Queensland. These novel human-mediated movement models are well suited to demonstrating area freedom at coarse spatio-temporal scales. At finer scales, and in the presence of ecological complexity, exploratory models are developed to investigate the capacity for surveillance information to estimate the extent of red banded mango caterpillar. It is apparent that excessive uncertainty about observation and ecological parameters can impose limits on inference at the scales required for effective management of response programs. The thesis contributes novel statistical approaches to estimating the extent of pests and develops applications to assist decision-making across a range of plant biosecurity surveillance activities. Hierarchical Bayesian modelling is demonstrated as both a useful analytical tool for estimating pest extent and a natural investigative paradigm for developing and focussing biosecurity programs.
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
Background While helmet usage is often mandated, few motorcycle and scooter riders make full use of protection for the rest of the body. Little is known about the factors associated with riders’ usage or non-usage of protective clothing. Methods Novice riders were surveyed prior to their provisional licence test in NSW, Australia. Questions related to usage and beliefs about protective clothing, riding experience and exposure, risk taking and demographic details. Multivariable Poisson regression models were used to identify factors associated with two measures of usage, comparing those who sometimes vs rarely/never rode unprotected and who usually wore non-motorcycle pants vs motorcycle pants. Results Ninety-four percent of eligible riders participated and usable data was obtained from 66% (n = 776). Factors significantly associated with riding unprotected were: youth (17–25 years) (RR = 2.00, 95% CI: 1.50–2.65), not seeking protective clothing information (RR = 1.29, 95% CI = 1.07–1.56), non-usage in hot weather (RR = 3.01, 95% CI: 2.38–3.82), awareness of social pressure to wear more protection (RR = 1.48, 95% CI: 1.12–1.95), scepticism about protective benefits (RR = 2.00, 95% CI: 1.22–3.28) and riding a scooter vs any type of motorcycle. A similar cluster of factors including youth (RR = 1.17, 95% CI: 1.04–1.32), social pressure (RR = 1.32, 95% CI: 1.16–1.50), hot weather (RR = 1.30, 95% CI: 1.19–1.41) and scooter vs motorcycles were also associated with wearing non-motorcycle pants. There was no evidence of an association between use of protective clothing and other indicators of risk taking behaviour. Conclusions Factors strongly associated with non-use of protective clothing include not having sought information about protective clothing and not believing in its injury reduction value. Interventions to increase use may therefore need to focus on development of credible information sources about crash risk and the benefits of protective clothing. Further work is required to develop motorcycle protective clothing suitable for hot climates.