326 resultados para Post emergence
Resumo:
Lattice-based cryptographic primitives are believed to offer resilience against attacks by quantum computers. We demonstrate the practicality of post-quantum key exchange by constructing cipher suites for the Transport Layer Security (TLS) protocol that provide key exchange based on the ring learning with errors (R-LWE) problem, we accompany these cipher suites with a rigorous proof of security. Our approach ties lattice-based key exchange together with traditional authentication using RSA or elliptic curve digital signatures: the post-quantum key exchange provides forward secrecy against future quantum attackers, while authentication can be provided using RSA keys that are issued by today's commercial certificate authorities, smoothing the path to adoption. Our cryptographically secure implementation, aimed at the 128-bit security level, reveals that the performance price when switching from non-quantum-safe key exchange is not too high. With our R-LWE cipher suites integrated into the Open SSL library and using the Apache web server on a 2-core desktop computer, we could serve 506 RLWE-ECDSA-AES128-GCM-SHA256 HTTPS connections per second for a 10 KiB payload. Compared to elliptic curve Diffie-Hellman, this means an 8 KiB increased handshake size and a reduction in throughput of only 21%. This demonstrates that provably secure post-quantum key-exchange can already be considered practical.
Resumo:
Due to ever increasing climate instability, the number of natural disasters affecting society and communities is expected to increase globally in the future, which will result in a growing number of casualties and damage to property and infrastructure. Such damage poses crucial challenges for recovery of interdependent critical infrastructures. Post-disaster reconstruction is a complex undertaking as it is not only closely linked to the well-being and essential functioning of society, but also requires a large financial commitment. Management of critical infrastructure during post-disaster recovery needs to be underpinned by a holistic recognition that the recovery of each individual infrastructure system (e.g. energy, water, transport and information and communication technology) can be affected by the interdependencies that exist between these different systems. A fundamental characteristic of these interdependencies is that failure of one critical infrastructure system can result in the failure of other interdependent infrastructures, leading to a cascade of failures, which can impede post-disaster recovery and delay the subsequent reconstruction process. Consequently, there is a critical need for developing a holistic strategy to assess the influence of infrastructure interdependencies, and for incorporating these interdependencies into a post-disaster recovery strategy. This paper discusses four key dimensions of interdependencies that need to be considered in a post-disaster reconstruction planning. Using key concepts and sub-concepts derived from the notion of interdependency, the paper examines how critical infrastructure interdependencies affect the recovery processes of damaged infrastructures.
Resumo:
During post-disaster recovery, an infrastructure system may be subject to a number of disturbances originating from several other interdependent infrastructures. These disturbances might result in a series of system failures, thereby having immediate impact on societal living conditions. The inability to detect signs of disturbance from one infrastructure during recovery might cause significant disruptive effects on other infrastructure via the interconnection that exist among them. In such circumstances, it clearly appears that critical infrastructures' interdependencies affect the recovery of each individual infrastructure, as well as those of other interdependent infrastructure systems. This is why infrastructure resilience needs to be improved in function of those interdependencies, particularly during the recovery period to avoid the occurrence of a ‘disaster of disaster’ scenario. Viewed from this perspective, resilience is achieved through an inter-organisational collaboration between the different organisations involved in the reconstruction of interdependent infrastructure systems. This paper suggests that to some extent, the existing degree of interconnectedness between these infrastructure systems can also be found in their resilience ability during post-disaster recovery. For instance, without a resilient energy system, a large-scale power outage could affect simultaneously all the interdependent infrastructures after a disaster. Thus, breaking down the silos of resilience would be the first step in minimizing the risks of disaster failures from one infrastructure to cascade or escalate to other interconnected systems.
Resumo:
When a community already torn by a prolonged war is subsequently subjected to being hit by a natural disaster, the combined impact of such disasters can be extremely devastating. Affected communities often face enormous challenges during the long-term reconstruction, mainly due to the lack of a viable community involvement process. In post-war settings, affected communities are often conceived as being disabled and are hardly ever consulted when reconstruction projects are instigated. This lack of community involvement often leads to poor project planning, decreased community support and an unsustainable completed project. The impact of war, coupled with the tensions created by the poor housing provisions, often hinder the affected residents from integrating permanently into their home communities. This paper identifies a number of fundamental factors that act as barriers to community participation in reconstruction projects. The paper is based on a statistical analysis of a questionnaire survey administered in 2012 in Afghanistan.
Resumo:
The importance of developing effective disaster management strategies has significantly grown as the world continues to be confronted with unprecedented disastrous events. Factors such as climate instability, recent urbanization along with rapid population growth in many cities around the world have unwittingly exacerbated the risks of potential disasters, leaving a large number of people and infrastructure exposed to new forms of threats from natural disasters such as flooding, cyclones, and earthquakes. With disasters on the rise, effective recovery planning of the built environment is becoming imperative as it is not only closely related to the well-being and essential functioning of society, but it also requires significant financial commitment. In the built environment context, post-disaster reconstruction focuses essentially on the repair and reconstruction of physical infrastructures. The reconstruction and rehabilitation efforts are generally performed in the form of collaborative partnerships that involve multiple organisations, enabling the restoration of interdependencies that exist between infrastructure systems such as energy, water (including wastewater), transport, and telecommunication systems. These interdependencies are major determinants of vulnerabilities and risks encountered by critical infrastructures and therefore have significant implications for post-disaster recovery. When disrupted by natural disasters, such interdependencies have the potential to promote the propagation of failures between critical infrastructures at various levels, and thus can have dire consequences on reconstruction activities. This paper outlines the results of a pilot study on how elements of infrastructure interdependencies have the potential to impede the post-disaster recovery effort. Using a set of unstructured interview questionnaires, plausible arguments provided by seven respondents revealed that during post-disaster recovery, critical infrastructures are mutually dependent on each other’s uninterrupted availability, both physically and through a host of information and communication technologies. Major disruption to their physical and cyber interdependencies could lead to cascading failures, which could delay the recovery effort. Thus, the existing interrelationship between critical infrastructures requires that the entire interconnected network be considered when managing reconstruction activities during the post-disaster recovery period.
Resumo:
Previous research with emergency service workers has examined the relationship between operational and organisational stress and negative indicators of mental health, and generally found that organisational stress is more strongly related to pathology than operational stress. The current study aimed to create and test a model predicting both posttraumatic stress disorder (PTSD) symptoms and posttraumatic growth (PTG) simultaneously in a sample of fire-fighters (N = 250). The results found that the model demonstrated good fit for the data. In contrast to previous research operational stress was directly related to PTSD symptoms, while organisational stress was not. Organisational stress was indirectly related to PTG, through the mediating role of organisational belongingness. This research identified organisational belongingness as a good target for psychosocial interventions aimed at promoting positive adaptation following the experience of trauma in emergency services.
Resumo:
Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included “marrying” ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.
Resumo:
Messenger RNAs (mRNAs) can be repressed and degraded by small non-coding RNA molecules. In this paper, we formulate a coarsegrained Markov-chain description of the post-transcriptional regulation of mRNAs by either small interfering RNAs (siRNAs) or microRNAs (miRNAs). We calculate the probability of an mRNA escaping from its domain before it is repressed by siRNAs/miRNAs via cal- culation of the mean time to threshold: when the number of bound siRNAs/miRNAs exceeds a certain threshold value, the mRNA is irreversibly repressed. In some cases,the analysis can be reduced to counting certain paths in a reduced Markov model. We obtain explicit expressions when the small RNA bind irreversibly to the mRNA and we also discuss the reversible binding case. We apply our models to the study of RNA interference in the nucleus, examining the probability of mRNAs escaping via small nuclear pores before being degraded by siRNAs. Using the same modelling framework, we further investigate the effect of small, decoy RNAs (decoys) on the process of post-transcriptional regulation, by studying regulation of the tumor suppressor gene, PTEN : decoys are able to block binding sites on PTEN mRNAs, thereby educing the number of sites available to siRNAs/miRNAs and helping to protect it from repression. We calculate the probability of a cytoplasmic PTEN mRNA translocating to the endoplasmic reticulum before being repressed by miRNAs. We support our results with stochastic simulations
Resumo:
Bien Hoa Airbase was one of the bulk storage and supply facilities for defoliants during the Vietnam War. Environmental and biological samples taken around the airbase have elevated levels of dioxin. In 2007, a pre-intervention knowledge, attitude and practice (KAP) survey of local residents living in Trung Dung and Tan Phong wards was undertaken regarding appropriate strategies to reduce dioxin exposure. A risk reduction programme was implemented in 2008 and post-intervention KAP surveys were undertaken in 2009 and 2013 to evaluate the longer term impacts. Quantitative assessment was undertaken via a KAP survey in 2013 among 600 local residents randomly selected from the two intervention wards and one control ward (Buu Long). Eight in-depth interviews and two focus group discussions were also undertaken for qualitative assessment. Most programme activities had ceased and dioxin risk communication activities had not been integrated into local routine health education programmes; however, main results generally remained and were better than that in Buu Long. In total, 48.2% of households undertook measures to prevent exposure, higher than those in pre- and post-intervention surveys (25.8% and 39.7%) and the control ward (7.7%). Migration and the sensitive nature of dioxin issues were the main challenges for the programme's sustainability
Resumo:
Nepal, as a consequence of its geographical location and changing climate, faces frequent threats of natural disasters. According to the World Bank’s 2005 Natural Disasters Hotspots Report, Nepal is ranked the 11th most vulnerable country to earthquake and 30th to flood risk. Geo-Hazards International (2011) has classified Kathmandu as one of the world’s most vulnerable cities to earthquakes. In the last four decades more than 32,000 people in Nepal have lost their lives and annual monetary loss is estimated at more than 15 million (US) dollars. This review identifies gaps in knowledge, and progress towards implementation of the Post Hyogo Framework of Action. Nepal has identified priority areas: community resilience, sustainable development and climate change induced disaster risk reduction. However, one gap between policy and action lies in the ability of Nepal to act effectively in accordance with an appropriate framework for media activities. Supporting media agencies include the Press Council, Federation of Nepalese Journalists, Nepal Television, Radio Nepal and Telecommunications Authority and community based organizations. The challenge lies in further strengthening traditional and new media to undertake systematic work supported by government bodies and the National Risk Reduction Consortium (NRRC). Within this context, the ideal role for media is one that is proactive where journalists pay attention to a range of appropriate angles or frames when preparing and disseminating information. It is important to develop policy for effective information collection, sharing and dissemination in collaboration with Telecommunication, Media and Journalists. The aim of this paper is to describe the developments in disaster management in Nepal and their implications for media management. This study provides lessons for government, community and the media to help improve the framing of disaster messages. Significantly, the research highlights the prominence that should be given to flood, landslides, lightning and earthquakes.
Resumo:
In this volume, the editors have brought together prominent international contributors to examine the relevance of Foucauldian thought on educational theory, practice and institutional life. The result is a diverse collection that offers broad and engaging analyses of how power and knowledge are configured in the practices and norms of schooling. This text not only provides a critical examination of the significance of Foucauldian thought for education, but also discusses how Foucault's theories are arrayed in the everyday life of schools.
Resumo:
Introduction Hospitalisation for percutaneous coronary intervention (PCI) is often short, with limited nurse-teaching time and poor information absorption. Currently, patients are discharged home only to wait up to 4-8 weeks to commence a secondary prevention program and visit their cardiologist. This wait is an anxious time for patients and confidence or self-efficacy (SE) to self-manage may be low. Objectives To determine the effects of a nurse-led, educational intervention on participant SE and anxiety in the early post-discharge period. Methods A pilot study was undertaken as a randomised controlled clinical trial. Thirty-three participants were recruited, with n=13 randomised to the intervention group. A face-to-face, nurse-led, educational intervention was undertaken within the first 5-7 days post-discharge. Intervention group participants received standard post-discharge education, physical assessment, with a strong focus on the emotional impact of cardiovascular events and PCI. Early reiteration of post-discharge education was offered, along with health professional support with the aim to increase patients’ SE and to effectively manage their post-discharge health and well being, as well as anxieties. Self-efficacy to return to normal activities was measured to gauge participants’ abilities to manage post-PCI after attending the intervention using the cardiac self-efficacy (CSE) scale. State and trait anxiety was also measured using the State-Trait Anxiety Inventory (STAI) to determine if an increase in SE would influence participant anxiety. Results There were some increases in mean CSE scores in the intervention group participants over time. Areas of increase included return to normal social activities and confidence to change diet. Although reductions were observed in mean state and trait anxiety scores in both groups, an overall larger reduction in intervention group participants was observed over time. Conclusion It is essential that patients are given the education, support, and skills to self-manage in the early post-discharge period so that they have greater SE and are less anxious. This study provides some initial evidence that nurse-led support and education during this period, particularly the first week following PCI, is beneficial and could be trialled using alternate modes of communication to support remote and rural PCI patients and extend to other cardiovascular patients.
Resumo:
Purpose The post-illumination pupil response (PIPR) has been quantified using four metrics, but the spectral sensitivity of only one is known; here we determine the other three. To optimize the human PIPR measurement, we determine the protocol producing the largest PIPR, the duration of the PIPR, and the metric(s) with the lowest coefficient of variation. Methods The consensual pupil light reflex (PLR) was measured with a Maxwellian view pupillometer. - Experiment 1: Spectral sensitivity of four PIPR metrics [plateau, 6 s, area under curve (AUC) early and late recovery] was determined from a criterion PIPR to a 1s pulse and fitted with Vitamin A1 nomogram (λmax = 482nm). - Experiment 2: The PLR was measured as a function of three stimulus durations (1s, 10s, 30s), five irradiances spanning low to high melanopsin excitation levels (retinal irradiance: 9.8 to 14.8 log quanta.cm-2.s-1), and two wavelengths, one with high (465nm) and one with low (637nm) melanopsin excitation. Intra and inter-individual coefficients of variation (CV) were calculated. Results The melanopsin (opn4) photopigment nomogram adequately describes the spectral sensitivity of all four PIPR metrics. The PIPR amplitude was largest with 1s short wavelength pulses (≥ 12.8 log quanta.cm-2.s-1). The plateau and 6s PIPR showed the least intra and inter-individual CV (≤ 0.2). The maximum duration of the sustained PIPR was 83.0±48.0s (mean±SD) for 1s pulses and 180.1±106.2s for 30s pulses (465nm; 14.8 log quanta.cm-2.s-1). Conclusions All current PIPR metrics provide a direct measure of the intrinsic melanopsin photoresponse. To measure progressive changes in melanopsin function in disease, we recommend that the PIPR be measured using short duration pulses (e.g., ≤ 1s) with high melanopsin excitation and analyzed with plateau and/or 6s metrics. Our PIPR duration data provide a baseline for the selection of inter-stimulus intervals between consecutive pupil testing sequences.
Resumo:
Purpose To determine whether melanopsin expressing intrinsically photosensitive Retinal Ganglion Cell (ipRGC) inputs to the pupil light reflex (PLR) are affected in early age-related macular degeneration (AMD). Methods The PLR was measured in 40 participants (20 early AMD and 20 age-matched controls) using a custom-built Maxwellian-view pupillometer. Sinusoidal stimuli (0.5 Hz, 11.9 s duration, 35.6° diameter) were presented to the study eye and the consensual pupil response was measured for stimuli with high melanopsin excitation (464nm; blue) and with low melanopsin excitation (638 nm; red) that biased activation to the outer retina. Two melanopsin PLR metrics were quantified: the Phase Amplitude Percentage (PAP) during the sinusoidal stimulus presentation and the Post-Illumination Pupil Response (PIPR). The PLR during stimulus presentation was analyzed using latency to constriction, transient pupil response and maximum pupil constriction metrics. Diagnostic accuracy was evaluated using receiver operating characteristic (ROC) curves. Results The blue PIPR was significantly less sustained in the early AMD group (p<0.001). The red PIPR was not significantly different between groups (p>0.05). The PAP and blue stimulus constriction amplitude were significantly lower in the early AMD group (p < 0.05). There was no significant difference between groups in the latency or transient amplitude for both stimuli (p>0.05). ROC analysis showed excellent diagnostic accuracy for the blue PIPR metrics (AUC>0.9). Conclusions This is the initial report that the melanopsin controlled PIPR is dysfunctional in early AMD. The non-invasive, objective measurement of the ipRGC controlled PIPR has excellent diagnostic accuracy for early AMD.
Resumo:
Melanopsin containing intrinsically photosensitive Retinal Ganglion cells (ipRGCs) mediate the pupil light reflex (PLR) during light onset and at light offset (the post-illumination pupil response, PIPR). Recent evidence shows that the PLR and PIPR can provide non-invasive, objective markers of age-related retinal and optic nerve disease, however there is no consensus on the effects of healthy ageing or refractive error on the ipRGC mediated pupil function. Here we isolated melanopsin contributions to the pupil control pathway in 59 human participants with no ocular pathology across a range of ages and refractive errors. We show that there is no effect of age or refractive error on ipRGC inputs to the human pupil control pathway. The stability of the ipRGC mediated pupil response across the human lifespan provides a functional correlate of their robustness observed during ageing in rodent models.