394 resultados para OH^-
Resumo:
Stichtite is a naturally occurring layered double hydroxide (LDH) with the ideal chemical formula Mg6Cr2CO3(OH)16·4H2O. It has received less attention in the literature than other LDHs and is often described as a rare mineral; however, abundant deposits of the mineral do exist. In this article we aim to review a number of significant publications concerning the mineral stichtite, including papers covering the discovery, geological origin, synthesis and characterizsation of stichtite. Characterization techniques reviewed include powder X-ray diffraction (XRD), infrared spectroscopy (IR), near infrared spectroscopy (NIR), Raman spectroscopy (Raman), thermogravimetry (TG) and electron microprobe analysis.
Resumo:
The mineral chalcosiderite with formula CuFe6(PO4)4(OH)8⋅4H2O has been studied by Raman spectroscopy and by infrared spectroscopy. A comparison of the chalcosiderite spectra is made with the spectra of turquoise. The spectra of the mineral samples are very similar in the 1200–900 cm−1 region but strong differences are observed in the 900–100 cm−1 region. The effect of substitution of Fe for Al in chalcosiderite shifts the bands to lower wave numbers. Factor group analysis (FGA) implies four OH stretching vibrations for both the water and hydroxyl units. Two bands ascribed to water are observed at 3276 and 3072 cm−1. Three hydroxyl stretching vibrations are observed. Calculations using a Libowitzky type formula show that the hydrogen bond distances of the water molecules are 2.745 and 2.812 Å which are considerably shorter than the values for the hydroxyl units 2.896, 2.917 and 2.978 Å. Two phosphate stretching vibrations at 1042 and 1062 cm−1 in line with the two independent phosphate units in the structure of chalcosiderite. Three bands are observed at 1102, 1159 and 1194 cm−1 assigned to the phosphate antisymmetric stretching vibrations. FGA predicts six bands but only three are observed due to accidental degeneracy. Both the ν2 and ν4 bending regions are complex. Four Raman bands observed at 536, 580, 598 and 636 cm−1 are assigned to the ν4 bending modes. Raman bands at 415, 420, 475 and 484 cm−1are assigned to the phosphate ν2 bending modes. Vibrational spectroscopy enables aspects of the molecular structure of chalcosiderite to be assessed.
Resumo:
A nanostructured Schottky diode was fabricated to sense hydrogen and propene gases in the concentration range of 0.06% to 1%. The ZnO sensitive layer was deposited on SiC substrate by pulse laser deposition technique. Scanning electron microscopy and X-ray diffraction characterisations revealed presence of wurtzite structured ZnO nanograins grown in the direction of (002) and (004). The nanostructured diode was investigated at optimum operating temperature of 260 °C. At a constant reverse current of 1 mA, the voltage shifts towards 1% hydrogen and 1% propene were measured as 173.3 mV and 191.8 mV, respectively.
Resumo:
Vitamin D may have anti-skin cancer effects, but population-based evidence is lacking. We therefore assessed associations between vitamin D status and skin cancer risk in an Australian subtropical community. We analyzed prospective skin cancer incidence for 11 years following baseline assessment of serum 25(OH)-vitamin D in 1,191 adults (average age 54 years) and used multivariable logistic regression analysis to adjust risk estimates for age, sex, detailed assessments of usual time spent outdoors, phenotypic characteristics, and other possible confounders. Participants with serum 25(OH)-vitamin D concentrations above 75 nmol l(-1) versus those below 75 nmol l(-1) more often developed basal cell carcinoma (odds ratio (OR)=1.51 (95% confidence interval (CI): 1.10-2.07, P=0.01) and melanoma (OR=2.71 (95% CI: 0.98-7.48, P=0.05)). Squamous cell carcinoma incidence tended to be lower in persons with serum 25(OH)-vitamin D concentrations above 75 nmol l(-1) compared with those below 75 nmol l(-1) (OR=0.67 (95% CI: 0.44-1.03, P=0.07)). Vitamin D status was not associated with skin cancer incidence when participants were classified as above or below 50 nmol l(-1) 25(OH)-vitamin D. Our findings do not indicate that the carcinogenicity of high sun exposure can be counteracted by high vitamin D status. High sun exposure is to be avoided as a means to achieve high vitamin D status.
Resumo:
Circulating 25-hydroxyvitamin D (25(OH)D), a marker for vitamin D status, is associated with bone health and possibly cancers and other diseases; yet, the determinants of 25(OH)D status, particularly ultraviolet radiation (UVR) exposure, are poorly understood. Determinants of 25(OH)D were analyzed in a subcohort of 1,500 participants of the US Radiologic Technologists (USRT) Study that included whites (n 842), blacks (n 646), and people of other races/ethnicities (n 12). Participants were recruited monthly (20082009) across age, sex, race, and ambient UVR level groups. Questionnaires addressing UVR and other exposures were generally completed within 9 days of blood collection. The relation between potential determinants and 25(OH)D levels was examined through regression analysis in a random two-thirds sample and validated in the remaining one third. In the regression model for the full study population, age, race, body mass index, some seasons, hours outdoors being physically active, and vitamin D supplement use were associated with 25(OH)D levels. In whites, generally, the same factors were explanatory. In blacks, only age and vitamin D supplement use predicted 25(OH)D concentrations. In the full population, determinants accounted for 25 of circulating 25(OH)D variability, with similar correlations for subgroups. Despite detailed data on UVR and other factors near the time of blood collection, the ability to explain 25(OH)D was modest.
Resumo:
OBJECTIVE There has been a dramatic increase in vitamin D testing in Australia in recent years, prompting calls for targeted testing. We sought to develop a model to identify people most at risk of vitamin D deficiency. DESIGN AND PARTICIPANTS This is a cross-sectional study of 644 60- to 84-year-old participants, 95% of whom were Caucasian, who took part in a pilot randomized controlled trial of vitamin D supplementation. MEASUREMENTS Baseline 25(OH)D was measured using the Diasorin Liaison platform. Vitamin D insufficiency and deficiency were defined using 50 and 25 nmol/l as cut-points, respectively. A questionnaire was used to obtain information on demographic characteristics and lifestyle factors. We used multivariate logistic regression to predict low vitamin D and calculated the net benefit of using the model compared with 'test-all' and 'test-none' strategies. RESULTS The mean serum 25(OH)D was 42 (SD 14) nmol/1. Seventy-five per cent of participants were vitamin D insufficient and 10% deficient. Serum 25(OH)D was positively correlated with time outdoors, physical activity, vitamin D intake and ambient UVR, and inversely correlated with age, BMI and poor self-reported health status. These predictors explained approximately 21% of the variance in serum 25(OH)D. The area under the ROC curve predicting vitamin D deficiency was 0·82. Net benefit for the prediction model was higher than that for the 'test-all' strategy at all probability thresholds and higher than the 'test-none' strategy for probabilities up to 60%. CONCLUSION Our model could predict vitamin D deficiency with reasonable accuracy, but it needs to be validated in other populations before being implemented.
Resumo:
Observational studies suggest that people with a high serum 25-hydroxyvitamin D (25(OH)D) concentration may have reduced risk of chronic diseases such as osteoporosis, multiple sclerosis, type 1 diabetes, cardiovascular disease, and some cancers. The AusD Study (A Quantitative Assessment of Solar UV Exposure for Vitamin D Synthesis in Australian Adults) was conducted to clarify the relationships between ultraviolet (UV) radiation exposure, dietary intake of vitamin D, and serum 25(OH)D concentration among Australian adults residing in Townsville (19.3°S), Brisbane (27.5°S), Canberra (35.3°S), and Hobart (42.8°S). Participants aged 18-75 years were recruited from the Australian Electoral Roll between 2009 and 2010. Measurements were made of height, weight, waist:hip ratio, skin, hair, and eye color, blood pressure, and grip strength. Participants completed a questionnaire on sun exposure and vitamin D intake, together with 10 days of personal UV dosimetry and an associated sun-exposure and physical-activity diary that was temporally linked to a blood test for measurement of 25(OH)D concentration. Ambient solar UV radiation was also monitored at all study sites. We collected comprehensive, high-quality data from 1,002 participants (459 males, 543 females) assessed simultaneously across a range of latitudes and through all seasons. Here we describe the scientific and methodological issues considered in designing the AusD Study.
Resumo:
Objective: To examine the context of occupational health and safety related to blood-borne communicable diseases practice. Methods: A case study approach using qualitative semi-structured interviews with five key informants who represented different sectors of the beauty therapy industry in South Australia. Results: Four main themes were identified: (i) exposure to blood and blood-borne communicable diseases; (ii) prevention in practice; (iii) OH&S problems; and (iv) industry needs. Conclusion: Key OH&S issues in the beauty therapy industry include: power relationships between employers and employees, equipment costs, the need for more continuing education, and monitoring of practitioners. Implications: Economic constraints, continuing education, and government regulation of the beauty therapy industry are highlighted as significant areas for further consideration in addressing the OH&S needs of practitioners and their clients.
Resumo:
Objective: To examine current knowledge and practice of occupational health and safety (OH&S) regarding hepatitis C in beauty therapy practice. Methods: A questionnaire was sent to all beauty therapy practices identified through the Telstra Yellow Pages and distributed via beauty therapy product agencies. Results: 119 questionnaires were completed by employers and employees in 99 beauty therapy practices in metropolitan Adelaide. Beauty therapists reported carrying out many practices that had exposed them to blood in the past. More than 80% of the procedures carried out by beauty therapists in the previous week were reported to have led to exposure to blood. 39.5% of respondents had not received information about OH&S practices related to blood spills and 77.5% of respondents had received no OH&S information about hepatitis C. Knowledge of hepatitis C and its transmission was poor, with 62% of respondents incorrectly identifying the prevalence of hepatitis C and respondents incorrectly identifying sneezing (28%), kissing (46%) and sharing coffee cups (42%) as a modes of transmission. 80% of beauty therapy practices had no OH&S representative. Conclusion: Beauty therapy practice can expose both operator and client to blood and is therefore a potential site for the transmission of blood-borne diseases including hepatitis C. OH&S information is inadequate in this industry and knowledge of hepatitis C is poor.
Resumo:
We have studied the mineral väyrynenite from the Viitaniemi pegmatite, located in the Eräjärvi area, Finland using a combination of electron microscopy electron microprobe and vibrational spectroscopic techniques. Chemical analysis shows the formula of the mineral to be (Mn0.88,Fe0.08,Mg0.01)∑0.97Be1.02(PO4)1.00(OH)1.02. Vibrational spectroscopy enables an assessment of the molecular structure of väyrynenite to be assessed. An intense Raman band at 1004 cm−1 is to the ν1 symmetric stretching mode. The observation of multiple bands in the phosphate stretching region, offers support for the concept of different phosphate units in the väyrynenite structure. Infrared spectroscopy confirms this multiplicity of vibrational bands. Multiple bands are observed in the phosphate bending region.
Resumo:
The mineral amarantite Fe23+(SO4)O∙7H2O has been studied using a combination of techniques including thermogravimetry, electron probe analyses and vibrational spectroscopy. Thermal analysis shows decomposition steps at 77.63, 192.2, 550 and 641.4°C. The Raman spectrum of amarantite is dominated by an intense band at 1017 cm-1 assigned to the SO42- ν1 symmetric stretching mode. Raman bands at 1039, 1054, 1098, 1131, 1195 and 1233 cm-1 are attributed to the SO42- ν3 antisymmetric stretching modes. Very intense Raman band is observed at 409 cm-1 with shoulder bands at 399, 451 and 491 cm-1 are assigned to the v2 bending modes. A series of low intensity Raman bands are found at 543, 602, 622 and 650 cm-1 are assigned to the v4 bending modes. A very sharp Raman band at 3529 cm-1 is assigned to the stretching vibration of OH units. A series of Raman bands observed at 3025, 3089, 3227, 3340, 3401 and 3480 cm-1 are assigned to water bands. Vibrational spectroscopy enables aspects of the molecular structure of the mineral amarantite to be ascertained.
Resumo:
The pegmatite mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm�1 assigned to the PO3�4 symmetric stretching mode. Multiple Raman bands are observed in the PO3�4 antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the m4 and m2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm�1 are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite.
Resumo:
Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the phosphate mineral fairfieldite. The Raman phosphate (PO4)3- stretching region shows strong differences between the fairfieldite phosphate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists with multiple (PO4)2- antisymmetric stretching vibrations observed, indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 600 cm-1 are assigned to v4 phosphate bending modes. Multiple bands in the 400–450 cm-1 region assigned to m2 phosphate bending modes provide further evidence of symmetry reduction of the phosphate anion. Three broadbands for fairfieldite are found at 3040, 3139 and 3271 cm-1 and are assigned to OH stretching bands. By using a Libowitzky empirical equation hydrogen bond distances of 2.658 and 2.730 A are estimated. Vibrational spectroscopy enables aspects of the molecular structure of the fairfieldite to be ascertained.
Resumo:
Vibrational spectroscopy has been used to characterize the sulphate mineral khademite Al(SO4)F∙5(H2O). Raman band at 991 cm-1 with a shoulder at 975 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode. The observation of two symmetric stretching modes suggests that the sulphate units are not equivalent. Two low intensity Raman bands at 1104 and 1132 cm-1 are assigned to the ν3 (SO4)2- antisymmetric stretching mode. The broad Raman band at 618 cm-1 is assigned to the v4 (SO4)2- bending modes. Raman bands at 455, 505 and 534 cm-1 are attributable to the doubly degenerate v2 (SO4)2- bending modes. Raman bands at 2991, 3146 and 3380 cm-1 are assigned to the OH stretching bands of water. Five infrared bands are noted at 2458, 2896, 3203, 3348 and 3489 cm-1 are also due to water stretching bands. The observation of multiple water stretching vibrations gives credence to the non-equivalence of water units in the khademite structure. Vibrational spectroscopy enables an assessment of the structure of khademite.
Resumo:
A comprehensive study was conducted on mesoporous MCM-41. Spectroscopic examinations demonstrated that three types of silanol groups, i.e., single, (SiO)3Si-OH, hydrogen-bonded, (SiO)3Si-OH-OH-Si(SiO)3, and geminal, (SiO)2Si(OH)2, can be observed. The number of silanol groups/nm2, ?OH, as determined by NMR, varies between 2.5 and 3.0 depending on the template-removal methods. All these silanol groups were found to be the active sites for adsorption of pyridine with desorption energies of 91.4 and 52.2 kJ mol-1, respectively. However, only free silanol groups (involving single and geminal silanols) are highly accessible to the silylating agent, chlorotrimethylsilane. Silylation can modify both the physical and chemical properties of MCM-41.