379 resultados para Network virtualization
Resumo:
This thesis explored traffic characteristics at the aggregate level for area-wide traffic monitoring of large urban area. It focused on three aspects: understanding a macroscopic network performance under real-time traffic information provision, measuring traffic performance of a signalised arterial network using available data sets, and discussing network zoning for monitoring purposes in the case of Brisbane, Australia. This work presented the use of probe vehicle data for estimating traffic state variables, and illustrated dynamic features of regional traffic performance of Brisbane. The results confirmed the viability and effectiveness of area-wide traffic monitoring.
Resumo:
Abstract: Social network technologies, as we know them today have become a popular feature of everyday life for many people. As their name suggests, their underlying premise is to enable people to connect with each other for a variety of purposes. These purposes however, are generally thought of in a positive fashion. Based on a multi-method study of two online environments, Habbo Hotel and Second Life, which incorporate social networking functionality, we she light on forms of what can be conceptualized as antisocial behaviours and the rationales for these. Such behaviours included: scamming, racist/homophobic attacks, sim attacks, avatar attacks, non-conformance to contextual norms, counterfeiting and unneighbourly behaviour. The rationales for sub behaviours included: profit, fun, status building, network disruption, accidental acts and prejudice. Through our analysis we are able to comment upon the difficulties of defining antisocial behaviour in such environments, particularly when such environments are subject to interpretation vis their use and expected norms. We also point to the problems we face in conducting our public and private lives given the role ICTs are playing in the convergence of these two spaces and also the convergence of ICTs themselves.
Resumo:
This paper presents a case study for the application of a Linear Engineering Asset Renewal decision support software tool (LinEAR) at a water distribution network in Australia. This case study examines how the LinEAR can assist water utilities to minimise their total pipeline management cost, to make a long-term budget based on mathematically predicted expenditure, and to present calculated evidence for supporting their expenditure requirements. The outcomes from the study on pipeline renewal decision support demonstrate that LinEAR can help water utilities to improve the decision process and save renewal costs over a long-term by providing an optimum renewal schedules. This software can help organisation to accumulate technical knowledge and prediction future impact of the decision using what-if analysis.
Resumo:
This thesis introduces advanced Demand Response algorithms for residential appliances to provide benefits for both utility and customers. The algorithms are engaged in scheduling appliances appropriately in a critical peak day to alleviate network peak, adverse voltage conditions and wholesale price spikes also reducing the cost of residential energy consumption. Initially, a demand response technique via customer reward is proposed, where the utility controls appliances to achieve network improvement. Then, an improved real-time pricing scheme is introduced and customers are supported by energy management schedulers to actively participate in it. Finally, the demand response algorithm is improved to provide frequency regulation services.
Resumo:
This paper introduces a new method to automate the detection of marine species in aerial imagery using a Machine Learning approach. Our proposed system has at its core, a convolutional neural network. We compare this trainable classifier to a handcrafted classifier based on color features, entropy and shape analysis. Experiments demonstrate that the convolutional neural network outperforms the handcrafted solution. We also introduce a negative training example-selection method for situations where the original training set consists of a collection of labeled images in which the objects of interest (positive examples) have been marked by a bounding box. We show that picking random rectangles from the background is not necessarily the best way to generate useful negative examples with respect to learning.
Resumo:
Supervisory Control and Data Acquisition systems (SCADA) are widely used to control critical infrastructure automatically. Capturing and analyzing packet-level traffic flowing through such a network is an essential requirement for problems such as legacy network mapping and fault detection. Within the framework of captured network traffic, we present a simple modeling technique, which supports the mapping of the SCADA network topology via traffic monitoring. By characterizing atomic network components in terms of their input-output topology and the relationship between their data traffic logs, we show that these modeling primitives have good compositional behaviour, which allows complex networks to be modeled. Finally, the predictions generated by our model are found to be in good agreement with experimentally obtained traffic.
Resumo:
Background: Seizures and interictal spikes in mesial temporal lobe epilepsy (MTLE) affect a network of brain regions rather than a single epileptic focus. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have demonstrated a functional network in which hemodynamic changes are time-locked to spikes. However, whether this reflects the propagation of neuronal activity from a focus, or conversely the activation of a network linked to spike generation remains unknown. The functional connectivity (FC) changes prior to spikes may provide information about the connectivity changes that lead to the generation of spikes. We used EEG-fMRI to investigate FC changes immediately prior to the appearance of interictal spikes on EEG in patients with MTLE. Methods/principal findings: Fifteen patients with MTLE underwent continuous EEG-fMRI during rest. Spikes were identified on EEG and three 10 s epochs were defined relative to spike onset: spike (0–10 s), pre-spike (−10 to 0 s), and rest (−20 to −10 s, with no previous spikes in the preceding 45s). Significant spike-related activation in the hippocampus ipsilateral to the seizure focus was found compared to the pre-spike and rest epochs. The peak voxel within the hippocampus ipsilateral to the seizure focus was used as a seed region for FC analysis in the three conditions. A significant change in FC patterns was observed before the appearance of electrographic spikes. Specifically, there was significant loss of coherence between both hippocampi during the pre-spike period compared to spike and rest states. Conclusion/significance: In keeping with previous findings of abnormal inter-hemispheric hippocampal connectivity in MTLE, our findings specifically link reduced connectivity to the period immediately before spikes. This brief decoupling is consistent with a deficit in mutual (inter-hemispheric) hippocampal inhibition that may predispose to spike generation.
Resumo:
Network Real-Time Kinematic (NRTK) is a technology that can provide centimeter-level accuracy positioning services in real time, and it is enabled by a network of Continuously Operating Reference Stations (CORS). The location-oriented CORS placement problem is an important problem in the design of a NRTK as it will directly affect not only the installation and operational cost of the NRTK, but also the quality of positioning services provided by the NRTK. This paper presents a Memetic Algorithm (MA) for the location-oriented CORS placement problem, which hybridizes the powerful explorative search capacity of a genetic algorithm and the efficient and effective exploitative search capacity of a local optimization. Experimental results have shown that the MA has better performance than existing approaches. In this paper we also conduct an empirical study about the scalability of the MA, effectiveness of the hybridization technique and selection of crossover operator in the MA.
Resumo:
The network reconfiguration is an important stage of restoring a power system after a complete blackout or a local outage. Reasonable planning of the network reconfiguration procedure is essential for rapidly restoring the power system concerned. An approach for evaluating the importance of a line is first proposed based on the line contraction concept. Then, the interpretative structural modeling (ISM) is employed to analyze the relationship among the factors having impacts on the network reconfiguration. The security and speediness of restoring generating units are considered with priority, and a method is next proposed to select the generating unit to be restored by maximizing the restoration benefit with both the generation capacity of the restored generating unit and the importance of the line in the restoration path considered. Both the start-up sequence of generating units and the related restoration paths are optimized together in the proposed method, and in this way the shortcomings of separately solving these two issues in the existing methods are avoided. Finally, the New England 10-unit 39-bus power system and the Guangdong power system in South China are employed to demonstrate the basic features of the proposed method.
Resumo:
This thesis presents an association rule mining approach, association hierarchy mining (AHM). Different to the traditional two-step bottom-up rule mining, AHM adopts one-step top-down rule mining strategy to improve the efficiency and effectiveness of mining association rules from datasets. The thesis also presents a novel approach to evaluate the quality of knowledge discovered by AHM, which focuses on evaluating information difference between the discovered knowledge and the original datasets. Experiments performed on the real application, characterizing network traffic behaviour, have shown that AHM achieves encouraging performance.
Resumo:
This article analyses co-movements in a wide group of commodity prices during the time period 1992–2010. Our methodological approach is based on the correlation matrix and the networks inside. Through this approach we are able to summarize global interaction and interdependence, capturing the existing heterogeneity in the degrees of synchronization between commodity prices. Our results produce two main findings: (a) we do not observe a persistent increase in the degree of co-movement of the commodity prices in our time sample, however from mid-2008 to the end of 2009 co-movements almost doubled when compared with the average correlation; (b) we observe three groups of commodities which have exhibited similar price dynamics (metals, oil and grains, and oilseeds) and which have increased their degree of co-movement during the sampled period.
Resumo:
In this paper, we present a dynamic model to identify influential users of micro-blogging services. Micro-blogging services, such as Twitter, allow their users (twitterers) to publish tweets and choose to follow other users to receive tweets. Previous work on user influence on Twitter, concerns more on following link structure and the contents user published, seldom emphasizes the importance of interactions among users. We argue that, by emphasizing on user actions in micro-blogging platform, user influence could be measured more accurately. Since micro-blogging is a powerful social media and communication platform, identifying influential users according to user interactions has more practical meanings, e.g., advertisers may concern how many actions – buying, in this scenario – the influential users could initiate rather than how many advertisements they spread. By introducing the idea of PageRank algorithm, innovatively, we propose our model using action-based network which could capture the ability of influential users when they interacting with micro-blogging platform. Taking the evolving prosperity of micro-blogging into consideration, we extend our actionbaseduser influence model into a dynamic one, which could distinguish influential users in different time periods. Simulation results demonstrate that our models could support and give reasonable explanations for the scenarios that we considered.