624 resultados para Muti-Modal Biometrics, User Authentication, Fingerprint Recognition, Palm Print Recognition
Resumo:
People interact with mobile computing devices everywhere, while sitting, walking, running or even driving. Adapting the interface to suit these contexts is important, thus this paper proposes a simple human activity classification system. Our approach uses a vector magnitude recognition technique to detect and classify when a person is stationary (or not walking), casually walking, or jogging, without any prior training. The user study has confirmed the accuracy.
Resumo:
To sustain an ongoing rapid growth of video information, there is an emerging demand for a sophisticated content-based video indexing system. However, current video indexing solutions are still immature and lack of any standard. This doctoral consists of a research work based on an integrated multi-modal approach for sports video indexing and retrieval. By combining specific features extractable from multiple audio-visual modalities, generic structure and specific events can be detected and classified. During browsing and retrieval, users will benefit from the integration of high-level semantic and some descriptive mid-level features such as whistle and close-up view of player(s).
Resumo:
Experience underlies all kinds of human knowledge and it is dependent on context. People’s experience within a particular context-of-use determines how they interact with products. Methods employed in this research to elicit human experience have included the use of visuals. This paper describes two empirical studies that employed visual representation of concepts as a means to explore the experiential and contextual component of user- product interactions. One study employed visuals that the participants produced during the study. The other employed visuals that the researcher used as prompts during a focus group session. This paper demonstrates that using visuals in design research is valuable for exploring and understanding the contextual aspects of human experience and its influence on people’s concepts of product use.
Resumo:
Providing a positive user experience (UX) has become the key differentiator for products to win a competition in mature markets. To ensure that a product will support enjoyable experiences for its users, assessment of UX should be conducted early during the design and development process. However, most UX frameworks and evaluation techniques focus on understanding and assessing user’s experience with functional prototypes or existing products. This situation delays UX assessment until the late phases of product development which may result in costly design modifications and less desirable products. A qualitative study was conducted to investigate anticipated user experience (AUX) to address this issue. Twenty pairs of participants were asked to imagine an interactive product, draw their product concept, and anticipate their interactions and experiences with it. The data was analyzed to identify general characteristics of AUX. We found that while positive AUX was mostly related to an imagined/desired product, negative AUX was mainly associated with existing products. It was evident that the pragmatic quality of product was fundamental, and significantly influenced user’s anticipated experiences. Furthermore, the hedonic quality of product received more focus in positive than negative AUX. The results also showed that context, user profile, experiential knowledge, and anticipated emotion could be reflected in AUX. The understanding of AUX will help product designers to better foresee the users’ underlying needs and to focus on the most important aspects of their positive experiences, which in turn facilitates the designers to ensure pleasurable UX from the start of the design process.
Resumo:
In this paper we present a novel algorithm for localization during navigation that performs matching over local image sequences. Instead of calculating the single location most likely to correspond to a current visual scene, the approach finds candidate matching locations within every section (subroute) of all learned routes. Through this approach, we reduce the demands upon the image processing front-end, requiring it to only be able to correctly pick the best matching image from within a short local image sequence, rather than globally. We applied this algorithm to a challenging downhill mountainbiking visual dataset where there was significant perceptual or environment change between repeated traverses of the environment, and compared performance to applying the feature-based algorithm FAB-MAP. The results demonstrate the potential for localization using visual sequences, even when there are no visual features that can be reliably detected.
Resumo:
With the growth of the Web, E-commerce activities are also becoming popular. Product recommendation is an effective way of marketing a product to potential customers. Based on a user’s previous searches, most recommendation methods employ two dimensional models to find relevant items. Such items are then recommended to a user. Further too many irrelevant recommendations worsen the information overload problem for a user. This happens because such models based on vectors and matrices are unable to find the latent relationships that exist between users and searches. Identifying user behaviour is a complex process, and usually involves comparing searches made by him. In most of the cases traditional vector and matrix based methods are used to find prominent features as searched by a user. In this research we employ tensors to find relevant features as searched by users. Such relevant features are then used for making recommendations. Evaluation on real datasets show the effectiveness of such recommendations over vector and matrix based methods.
Resumo:
Automatic species recognition plays an important role in assisting ecologists to monitor the environment. One critical issue in this research area is that software developers need prior knowledge of specific targets people are interested in to build templates for these targets. This paper proposes a novel approach for automatic species recognition based on generic knowledge about acoustic events to detect species. Acoustic component detection is the most critical and fundamental part of this proposed approach. This paper gives clear definitions of acoustic components and presents three clustering algorithms for detecting four acoustic components in sound recordings; whistles, clicks, slurs, and blocks. The experiment result demonstrates that these acoustic component recognisers have achieved high precision and recall rate.
Resumo:
Non-invasive vibration analysis has been used extensively to monitor the progression of dental implant healing and stabilization. It is now being considered as a method to monitor femoral implants in transfemoral amputees. This paper evaluates two modal analysis excitation methods and investigates their capabilities in detecting changes at the interface between the implant and the bone that occur during osseointegration. Excitation of bone-implant physical models with the electromagnetic shaker provided higher coherence values and a greater number of modes over the same frequency range when compared to the impact hammer. Differences were detected in the natural frequencies and fundamental mode shape of the model when the fit of the implant was altered in the bone. The ability to detect changes in the model dynamic properties demonstrates the potential of modal analysis in this application and warrants further investigation.
Resumo:
Purpose: Web search engines are frequently used by people to locate information on the Internet. However, not all queries have an informational goal. Instead of information, some people may be looking for specific web sites or may wish to conduct transactions with web services. This paper aims to focus on automatically classifying the different user intents behind web queries. Design/methodology/approach: For the research reported in this paper, 130,000 web search engine queries are categorized as informational, navigational, or transactional using a k-means clustering approach based on a variety of query traits. Findings: The research findings show that more than 75 percent of web queries (clustered into eight classifications) are informational in nature, with about 12 percent each for navigational and transactional. Results also show that web queries fall into eight clusters, six primarily informational, and one each of primarily transactional and navigational. Research limitations/implications: This study provides an important contribution to web search literature because it provides information about the goals of searchers and a method for automatically classifying the intents of the user queries. Automatic classification of user intent can lead to improved web search engines by tailoring results to specific user needs. Practical implications: The paper discusses how web search engines can use automatically classified user queries to provide more targeted and relevant results in web searching by implementing a real time classification method as presented in this research. Originality/value: This research investigates a new application of a method for automatically classifying the intent of user queries. There has been limited research to date on automatically classifying the user intent of web queries, even though the pay-off for web search engines can be quite beneficial. © Emerald Group Publishing Limited.
Resumo:
In this paper we present a novel algorithm for localization during navigation that performs matching over local image sequences. Instead of calculating the single location most likely to correspond to a current visual scene, the approach finds candidate matching locations within every section (subroute) of all learned routes. Through this approach, we reduce the demands upon the image processing front-end, requiring it to only be able to correctly pick the best matching image from within a short local image sequence, rather than globally. We applied this algorithm to a challenging downhill mountain biking visual dataset where there was significant perceptual or environment change between repeated traverses of the environment, and compared performance to applying the feature-based algorithm FAB-MAP. The results demonstrate the potential for localization using visual sequences, even when there are no visual features that can be reliably detected.