294 resultados para Mineral supplements
Resumo:
Cystic fibrosis (CF) patients require pancreatic enzyme replacement therapy to correct pancreatic insufficiency. These enzymes are derived from porcine pancreas and are known to be antigenic. To determine the possible clinical consequences, a specific ELISA was developed to detect IgG antibody directed against porcine trypsin (PTAb) in the sera of CF patients. The assay was used to evaluate the occurrence of PTAb in a cross sectional study of 103 CF patients in relation to the introduction of porcine enzyme therapy, clinical status and genotype. Antibodies against porcine trypsin were detected in the sera of 63% of patients unrelated to the age of commencement or the duration of enzyme therapy. No differences were observed in the clinical status of CF patients who had developed PTAb (n = 65) and those who had no detectable PTAb (n = 38) as determined from: the current prescribed dose of porcine pancreatic enzyme capsules; Z scores for height and weight; and respiratory function tests. It is suggested that the PTAb commonly found in the sera of CF patients are of doubtful clinical significance but the prospect of PTAb contributing to immune complex disease should be examined further.
Resumo:
To evaluate the relative efficacy of nonele-mental versus semielemental enteral supplements for nutritional rehabilitation of cystic fibrosis (CF) patients, whole-body protein turnover using the [15N]glycine method was studied in nine malnourished CF patients during enteral feedings, in a block design study compar-ing a semielemental formula (Criticare), a higher protein density but nonelemental formula (Traumacal) (T), and a nonelemental formula that had been modified to become isocaloric and isonitrogenous to the semielemental formula (modified Traumacal, MT). No significant differences in rates of protein synthesis or catabolism were observed comparing the three formulas. However the higher protein density nonelemental formula resulted in higher net protein deposition compared to the other two formulas (T + 0.42 g kg-110 h-1versus 0.33 g kg-110 h-1for Criticare and-0.59 g kg-110 h-1for MT), although this was significant (p < 0.05) for the MT versus T comparison only. This study lends support to the use of less expensive nonelemental formulas for the nutritional management of malnourished patients with CF. © 1990 Raven Press Ltd, New York.
Resumo:
Men receiving androgen deprivation therapy (ADT) for prostate cancer (PCa) are likely to develop metabolic conditions such as diabetes, cardiovascular disease, abdominal obesity and osteoporosis. Other treatment-related side effects adversely influence quality of life (QoL) including vasomotor distress, depression, anxiety, mood swings, poor sleep quality and compromised sexual function. The objective of this study was to systematically review the nature and effects of dietary and exercise interventions on QoL, androgen deprivation symptoms and metabolic risk factors in men with PCa undergoing ADT. An electronic search of CINAHL, CENTRAL, Medline, PsychINFO and reference lists was performed to identify peer-reviewed articles published between January 2004 and December, 2014 in English. Eligible study designs included randomised controlled trials with pre- and post-intervention data. Data extraction and assessment of methodological quality with the Cochrane approach was conducted by two independent reviewers. Seven exercise studies were identified. Exercise significantly improved QoL, but showed no effect on metabolic risk factors (weight, waist circumference, lean or fat mass, blood pressure, lipid profile). Two dietary studies were identified, both of which tested soy supplements. Soy supplementation did not improve any outcomes. No dietary counselling studies were identified. No studies evaluated androgen-deficiency symptoms (libido, erectile function, sleep quality, mood swings, depression, anxiety, bone mineral density). Evidence from RCTs indicates that exercise enhances health- and disease-specific QoL in men with PCa undergoing ADT. Further studies are required to evaluate the effect of exercise and dietary interventions on QoL, androgen deprivation symptoms and metabolic risk factors in this cohort.
Resumo:
HYPOTHESIS Bone is a metabolically active tissue which responds to high strain loading. The purpose of this study was to examine the bone response to high +Gz force loading generated during high performance flying. METHODS The bone response to +Gz force loading was monitored in 10 high performance RAAF pilots and 10 gender-, age-, height-, weight-matched control subjects. The pilots were stationed at the RAAF base at Pearce, Western Australia, all completing the 1-yr flight training course. The pilots flew the Pilatus PC-9 aircraft, routinely sustaining between 2.0 and 6.0 +Gz. Bone mineral density (BMD) and bone mineral content (BMC) were measured at baseline and 12 mo, using the Hologic QDR 2000+ bone densitometer. RESULTS After controlling for change in total body weight and fat mass, the pilots experienced a significant increase in BMD and BMC for thoracic spine, pelvis, and total body, in the magnitude of 11.0%, 4.9%, and 3.7%, respectively. However, no significant changes in bone mineral were observed in the pilots lumbar spine, arms or legs. The control group experienced a significant decrease in pelvic BMC, with no other bone mineral changes observed at any site. CONCLUSIONS These findings suggest that site specific BMD is increased in response to high +Gz forces generated during high performance flying in a PC-9.
Resumo:
The Ok Tedi copper orebody consists of porphyry and skarn orebodies. The skarn orebodies, identified by different mineralogy, are the source of high intermittent fluorine levels in the mill concentrates. This paper discusses the results of the work undertaken to characterize the various fluorine-bearing minerals in samples of final copper concentrates and the distribution of fluorine amongst the minerals. Quantification of each mineral in mill feed and various flotation streams at Ok Tedi enables an understanding of the quantitative response of fluorine-bearing minerals to flotation. The metallurgical behavior of fluorine in the flotation process is also discussed.
Resumo:
Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that single-nucleotide polymorphisms (SNPs) that may modulate protein phosphorylation could affect osteoporosis risk. Based on a previous conventional genome-wide association (GWA) study, we conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for femoral neck (FN)-bone mineral density (BMD), total hip (HIP)-BMD, and lumbar spine (LS)-BMD phenotypes. In stage 1, 9593 phosSNPs were meta-analyzed in 11,140 individuals of various ancestries. Genome-wide significance (GWS) and suggestive significance were defined by α = 5.21 × 10–6 (0.05/9593) and 1.00 × 10–4, respectively. In stage 2, nine stage 1–discovered phosSNPs (based on α = 1.00 × 10–4) were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs that replicated in stage 2 (based on α = 5.56 × 10–3, 0.05/9) were de novo genotyped in two independent cohorts. IDUA rs3755955 and rs6831280, and WNT16 rs2707466 were associated with BMD phenotypes in each respective stage, and in three stages combined, achieving GWS for both FN-BMD (p = 8.36 × 10–10, p = 5.26 × 10–10, and p = 3.01 × 10–10, respectively) and HIP-BMD (p = 3.26 × 10–6, p = 1.97 × 10–6, and p = 1.63 × 10–12, respectively). Although in vitro studies demonstrated no differences in expressions of wild-type and mutant forms of IDUA and WNT16B proteins, in silico analyses predicts that WNT16 rs2707466 directly abolishes a phosphorylation site, which could cause a deleterious effect on WNT16 protein, and that IDUA phosSNPs rs3755955 and rs6831280 could exert indirect effects on nearby phosphorylation sites. Further studies will be required to determine the detailed and specific molecular effects of these BMD-associated non-synonymous variants. © 2015 American Society for Bone and Mineral Research.
Resumo:
MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNAs' Target Sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)-, and femoral neck (FN)-bone mineral density (BMD). In stage I, 41,102 poly-miRTSs were meta-analyzed in 7 cohorts with a genome-wide significance (GWS) α=0.05/41,102=1.22×10-6. By applying α=5×10-5 (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P-value=7.67×10-6 and 1.58×10-5) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P-value=5.08×10-3) at α=0.10/11=9.09×10-3. PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P-value=7.55×10-6) at α=0.05/2=0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P-value=8.87×10-12). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation. © The Author 2015. Published by Oxford University Press. All rights reserved.
Resumo:
Aiming to identify novel genetic variants and to confirm previously identified genetic variants associated with bone mineral density (BMD), we conducted a three-stage genome-wide association (GWA) meta-analysis in 27 061 study subjects. Stage 1 meta-analyzed seven GWA samples and 11 140 subjects for BMDs at the lumbar spine, hip and femoral neck, followed by a Stage 2 in silico replication of 33 SNPs in 9258 subjects, and by a Stage 3 de novo validation of three SNPs in 6663 subjects. Combining evidence from all the stages, we have identified two novel loci that have not been reported previously at the genome-wide significance (GWS; 5.0 × 10-8) level: 14q24.2 (rs227425, P-value 3.98 × 10-13, SMOC1) in the combined sample of males and females and 21q22.13 (rs170183, P-value 4.15 × 10-9, CLDN14) in the female-specific sample. The two newly identified SNPs were also significant in the GEnetic Factors for OSteoporosis consortium (GEFOS, n 5 32 960) summary results. We have also independently confirmed 13 previously reported loci at the GWS level: 1p36.12 (ZBTB40), 1p31.3 (GPR177), 4p16.3 (FGFRL1), 4q22.1 (MEPE), 5q14.3 (MEF2C), 6q25.1 (C6orf97, ESR1), 7q21.3 (FLJ42280, SHFM1), 7q31.31 (FAM3C, WNT16), 8q24.12 (TNFRSF11B), 11p15.3 (SOX6), 11q13.4 (LRP5), 13q14.11 (AKAP11) and 16q24 (FOXL1). Gene expression analysis in osteogenic cells implied potential functional association of the two candidate genes (SMOC1 and CLDN14) in bone metabolism. Our findings independently confirm previously identified biological pathways underlying bone metabolism and contribute to the discovery of novel pathways, thus providing valuable insights into the intervention and treatment of osteoporosis. © The Author 2013. Published by Oxford University Press.
Resumo:
The aim of this study is to explore whether Australian mineral companies operating in high human rights risk countries provide more human rights disclosures than companies operating in low risk countries. A content analysis instrument containing 88 specific human rights performance items derived from a number of international human rights guidelines has been developed to investigate the annual reports, social responsibility reports and corporate websites of the top 50 Australian mineral companies (2010/2011). The findings show that human rights performance disclosures by companies with operations in high human rights risk countries are significantly higher than companies with operations in the low risk countries. By disclosing extended human rights performance information, companies operating in high risk countries appear to ease community concerns about human rights violations. The finding is consistent with legitimacy theory which posits that organisations respond to community concerns in relation to particular social issues.