369 resultados para Maximum exercise
Resumo:
Purpose: Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods: Mean skin temperature (T̅sk) was assessed in thirty healthy males during 30 min rest (24.0± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery(24.0 ± 1.3°C, 56 ± 9%). T̅sk was assessed at four sites using two conductive devices(thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results: Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T̅sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions: These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T̅sk in the presence of, or following, metabolic and environmental induced heat stress.
Resumo:
Ovarian cancer is the most common cause of gynaecological cancer death, with an overall 5-year relative survival of 43%. Impaired physical wellbeing and overall quality of life (QoL) represent major concerns for women during and following ovarian cancer treatment, predict survival and are amenable to change through interventions. Exercise, now considered an important part of overall management of a number of cancers, improves short-term outcomes (e.g., function, fatigue, QoL) during chemotherapy...
Resumo:
Cytokines are important mediators of various aspects of health and disease, including appetite, glucose and lipid metabolism, insulin sensitivity, skeletal muscle hypertrophy and atrophy. Over the past decade or so, considerable attention has focused on the potential for regular exercise to counteract a range of disease states by modulating cytokine production. Exercise stimulates moderate to large increases in the circulating concentrations of interleukin (IL)-6, IL-8, IL-10, IL-1 receptor antagonist, granulocyte-colony stimulating factor, and smaller increases in tumor necrosis factor-α, monocyte chemotactic protein-1, IL-1β, brain-derived neurotrophic factor, IL-12p35/p40 and IL-15. Although many of these cytokines are also expressed in skeletal muscle, not all are released from skeletal muscle into the circulation during exercise. Conversely, some cytokines that are present in the circulation are not expressed in skeletal muscle after exercise. The reasons for these discrepant cytokine responses to exercise are unclear. In this review, we address these uncertainties by summarizing the capacity of skeletal muscle cells to produce cytokines, analyzing other potential cellular sources of circulating cytokines during exercise, and discussing the soluble factors and intracellular signaling pathways that regulate cytokine synthesis (e.g., RNA-binding proteins, microRNAs, suppressor of cytokine signaling proteins, soluble receptors).
Resumo:
Background No tool exists to measure self-efficacy for overcoming lymphedema-related exercise barriers in individuals with cancer-related lymphedema. However, an existing scale measures confidence to overcome general exercise barriers in cancer survivors. Therefore, the purpose of this study was to develop, validate and assess the reliability of a subscale, to be used in conjunction with the general barriers scale, for determining exercise barriers self-efficacy in individuals facing lymphedema-related exercise barriers. Methods A lymphedema-specific exercise barriers self-efficacy subscale was developed and validated using a cohort of 106 cancer survivors with cancer-related lymphedema, from Brisbane, Australia. An initial ten-item lymphedema-specific barrier subscale was developed and tested, with participant feedback and principal components analysis results used to guide development of the final version. Validity and test-retest reliability analyses were conducted on the final subscale. Results The final lymphedema-specific subscale contained five items. Principal components analysis revealed these items loaded highly (> 0.75) on a separate factor when tested with a well-established nine-item general barriers scale. The final five-item subscale demonstrated good construct and criterion validity, high internal consistency (Cronbach’s alpha=0.93) and test-retest reliability (ICC=0.67, p< 0.01). Conclusions A valid and reliable lymphedema-specific subscale has been developed to assess exercise barriers self-efficacy in individuals with cancer-related lymphedema. This scale can be used in conjunction with an existing general exercise barriers scale to enhance exercise adherence in this understudied patient group.
Resumo:
Background Our aim was to evaluate the recovery effects of hydrotherapy after aerobic exercise in cardiovascular, performance and perceived fatigue. Methods A pragmatic controlled repeated measures; single-blind trial was conducted. Thirty-four recreational sportspeople visited a Sport-Centre and were assigned to a Hydrotherapy group (experimental) or rest in a bed (control) after completing a spinning session. Main outcomes measures including blood pressure, heart rate, handgrip strength, vertical jump, self-perceived fatigue, and body temperature were assessed at baseline, immediately post-exercise and post-recovery. The hypothesis of interest was the session*time interaction. Results The analysis revealed significant session*time interactions for diastolic blood pressure (P=0.031), heart rate (P=0.041), self perceived fatigue (P=0.046), and body temperature (P=0.001); but not for vertical jump (P=0.437), handgrip (P=0.845) or systolic blood pressure (P=0.266). Post-hoc analysis revealed that hydrotherapy resulted in recovered heart rate and diastolic blood pressure similar to baseline values after the spinning session. Further, hydrotherapy resulted in decreased self-perceived fatigue after the spinning session. Conclusions Our results support that hydrotherapy is an adequate strategy to facilitate cardiovascular recovers and perceived fatigue, but not strength, after spinning exercise. Trial registration ClinicalTrials.gov Identifier: NCT01765387 Keywords: Hydrotherapy; Heart rate; Fatigue; Strength; Blood pressure; Body temperature
Resumo:
Background Explosive ordnance disposal (EOD) technicians are often required to wear specialised clothing combinations that not only protect against the risk of explosion but also potential chemical contamination. This heavy (>35kg) and encapsulating ensemble is likely to increase physiological strain by increasing metabolic heat production and impairing heat dissipation. This study investigated the physiological tolerance times of two different chemical protective undergarments, commonly worn with EOD personal protective clothing, in a range of simulated environmental extremes and work intensities Methods Seven males performed eighteen trials wearing two ensembles. The trials involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT). The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to volitional fatigue. Results Physiological tolerance times ranged from 8 to 60 min and the duration (mean difference: 2.78 min, P>0.05) were similar in both ensembles. A significant effect for environment (21>30>37°C WBGT, P<0.05) and work intensity (2.5>4>5.5 km.h-1, P< 0.05) was observed in tolerance time. The majority of trials across both ensembles (101/126; 80.1%) were terminated due to participants achieving a heart rate equivalent to greater than 90% of their maximum. Conclusions Physiological tolerance times wearing these two chemical protective undergarments, worn underneath EOD personal protective clothing, were similar and predominantly limited by cardiovascular strain.
Resumo:
Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Animals were randomly assigned to nephrectomy or control and then to either voluntary wheel running exercise or sedentary. Following 12-weeks, aortic plaque area was significantly (p<0.05, d=1.2) lower in exercising nephrectomised mice compared to sedentary nephrectomised mice. There was a strong, negative correlation between average distance run each week and plaque area in nephrectomised and control mice (r=–0.76, p=0.048 and r=–0.73, p=0.062; respectively). In vitro aortic contraction and endothelial-independent and endothelial-dependent relaxation were not influenced by exercise (p>0.05). Nephrectomy increased IL-6 and TNF-α concentrations compared with control mice (p<0.001 and p<0.05, respectively), while levels of IL-10, MCP-1 and MIP-1α were not significantly influenced by nephrectomy or voluntary exercise (p>0.05). Exercise was an effective non-pharmacologic approach to slow cardiovascular disease in the presence of kidney disease in the apolipoprotein E knockout mouse.
Resumo:
The maximum principle for the space and time–space fractional partial differential equations is still an open problem. In this paper, we consider a multi-term time–space Riesz–Caputo fractional differential equations over an open bounded domain. A maximum principle for the equation is proved. The uniqueness and continuous dependence of the solution are derived. Using a fractional predictor–corrector method combining the L1 and L2 discrete schemes, we present a numerical method for the specified equation. Two examples are given to illustrate the obtained results.
Resumo:
This research provides valuable insight into exercise barriers and prescription for individuals with cancer-related lymphoedema, particularly following breast cancer. Findings from this work demonstrate that by identifying and addressing exercise barriers, exercise confidence improves and, as such, enables longer-term exercise participation. Further, the findings demonstrating similar lymphoedema-related and physical and psychosocial benefits are achieved through participation in either resistance- or aerobic-based exercise highlights that exercise programs can be individualised, taking into consideration participants' interests, without jeopardising a woman's recovery and longer-term function, health, quality of life and survival.
Resumo:
Editorial
Resumo:
The objectives of this study were (A) to record the inner prosthesis loading during activities of daily living (ADL), (B) to present a set of variables comparing loading data, and (C) to provide an example of characterisation of two prostheses. The load was measured at 200 Hz using a multi-axial transducer mounted between the residuum and the knee of an individual with unilateral transfemoral amputation fitted with a bone-anchored prosthesis. The load was measured while using two different prostheses including a mechanically (PRO1) and a microprocessor controlled (PRO2) knee during six ADL. The characterisation of prosthesis was achieved using a set of variables split into four categories, including temporal characteristics, maximum loading, loading slopes and impulse. Approximately 360 gait cycles were analysed for each prosthesis. PRO1 showed a cadence improved by 19% and 7%, a maximum force on the long axis reduced by 11% and 19%, as well as an impulse reduced by 32% and 15% during descent of incline and stairs compared to PRO2, respectively. This work confirmed that the proposed apparatus and characterisation can reveal how changes of prosthetic components are translated into inner loading.
Resumo:
The concept of specificity of exercise prescription and training is a longstanding and widely accepted foundation of the exercise sciences. Simply, the principle holds that training adaptations are achieved relative to the stimulus applied. That is, the manipulation of training variables (e.g. intensity or loading, mode, volume and frequency) directly influences the acute training stimulus, and so the long-term adaptive response (Young et al., 2001; Bird et al., 2005). Translating this concept to practice then recommends that exercise be prescribed specific to the desired outcomes, and the more closely this is achieved, the greater the performance gain is likely to be. However, the cardiovascular and metabolic adaptations traditionally associated with long, slow distance training types, similarly achieved using high-intensity training methods (for a review see Gibala et al., 2012), highlights understanding of underlying physiology as paramount for effective training program design. Various other factors including illness, sleep and psychology also impact on the training stimulus (Halson, 2014) and must be managed collectively with appropriate post-exercise recovery to continue performance improvements and reduce overtraining and injury risks (Kenttä and Hassmén, 1998).
Resumo:
Objective Explosive ordnance disposal (EOD) often requires technicians to wear multiple protective garments in challenging environmental conditions. The accumulative effect of increased metabolic cost coupled with decreased heat dissipation associated with these garments predisposes technicians to high levels of physiological strain. It has been proposed that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived exertion as surrogate measures of core body temperature and heart rate, may provide an accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI could estimate the physiological strain index (PSI) across a range of metabolic workloads and environments while wearing heavy EOD and chemical protective clothing. Methods Eleven healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 2.5, 4 and 5.5 km·h− 1 at 1% grade in environmental conditions equivalent to wet bulb globe temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a maximum of three randomised treadmill walking trials were completed in a single testing day. Trials were ceased at a maximum of 60-min or until the attainment of termination criteria. A Pearson's correlation coefficient, mixed linear model, absolute agreement and receiver operating characteristic (ROC) curves were used to determine the relationship between the PeSI and PSI. Results A significant moderate relationship between the PeSI and the PSI was observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of agreement − 1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power when used with two, single-threshold cut-offs to differentiate between low and high levels of physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). Conclusions These findings support the use of the PeSI for monitoring physiological strain while wearing EOD and chemical protective clothing. However, future research is needed to confirm the validity of the PeSI for active EOD technicians operating in the field.