338 resultados para Evolutionary techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Design Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Methods Eleven children aged 3–6 years (mean age = 4.8 ± 0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Results Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Conclusions Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overarching Research Questions Are ACT motorists aware of roadside saliva based drug testing operations? What is the perceived deterrent impact of the operations? What factors are predictive of future intentions to drug drive? What are the differences between key subgroups

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying product families has been considered as an effective way to accommodate the increasing product varieties across the diverse market niches. In this paper, we propose a novel framework to identifying product families by using a similarity measure for a common product design data BOM (Bill of Materials) based on data mining techniques such as frequent mining and clus-tering. For calculating the similarity between BOMs, a novel Extended Augmented Adjacency Matrix (EAAM) representation is introduced that consists of information not only of the content and topology but also of the fre-quent structural dependency among the various parts of a product design. These EAAM representations of BOMs are compared to calculate the similarity between products and used as a clustering input to group the product fami-lies. When applied on a real-life manufacturing data, the proposed framework outperforms a current baseline that uses orthogonal Procrustes for grouping product families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many insect clades, especially within the Diptera (true flies), have been considered classically ‘Gondwanan’, with an inference that distributions derive from vicariance of the southern continents. Assessing the role that vicariance has played in the evolution of austral taxa requires testing the location and tempo of diversification and speciation against the well-established predictions of fragmentation of the ancient super-continent. Several early (anecdotal) hypotheses that current austral distributions originate from the breakup of Gondwana derive from studies of taxa within the family Chironomidae (non-biting midges). With the advent of molecular phylogenetics and biogeographic analytical software, these studies have been revisited and expanded to test such conclusions better. Here we studied the midge genus Stictocladius Edwards, from the subfamily Orthocladiinae, which contains austral-distributed clades that match vicariance-based expectations. We resolve several issues of systematic relationships among morphological species and reveal cryptic diversity within many taxa. Time-calibrated phylogenetic relationships among taxa accorded partially with the predicted tempo from geology. For these apparently vagile insects, vicariance-dated patterns persist for South America and Australia. However, as often found, divergence time estimates for New Zealand at c. 50 mya post-date separation of Zealandia from Antarctica and the remainder of Gondwana, but predate the proposed Oligocene ‘drowning’ of these islands. We detail other such ‘anomalous’ dates and suggest a single common explanation rather than stochastic processes. This could involve synchronous establishment following recovery from ‘drowning’ and/or deleteriously warming associated with the mid-Eocene climatic optimum (hence ‘waving’, which refers to cycles of drowning events) plus new availability of topography providing of cool running waters, or all these factors in combination. Alternatively a vicariance explanation remains available, given the uncertain duration of connectivity of Zealandia to Australia–Antarctic–South America via the Lord Howe and Norfolk ridges into the Eocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary algorithms are playing an increasingly important role as search methods in cognitive science domains. In this study, methodological issues in the use of evolutionary algorithms were investigated via simulations in which procedures were systematically varied to modify the selection pressures on populations of evolving agents. Traditional roulette wheel, tournament, and variations of these selection algorithms were compared on the “needle-in-a-haystack” problem developed by Hinton and Nowlan in their 1987 study of the Baldwin effect. The task is an important one for cognitive science, as it demonstrates the power of learning as a local search technique in smoothing a fitness landscape that lacks gradient information. One aspect that has continued to foster interest in the problem is the observation of residual learning ability in simulated populations even after long periods of time. Effective evolutionary algorithms balance their search effort between broad exploration of the search space and in-depth exploitation of promising solutions already found. Issues discussed include the differential effects of rank and proportional selection, the tradeoff between migration of populations towards good solutions and maintenance of diversity, and the development of measures that illustrate how each selection algorithm affects the search process over generations. We show that both roulette wheel and tournament algorithms can be modified to appropriately balance search between exploration and exploitation, and effectively eliminate residual learning in this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-objective design optimization study has been conducted for upstream fuel injection through porous media applied to the first ramp of a two-dimensional scramjet intake. The optimization has been performed by coupling evolutionary algorithms assisted by surrogate modeling and computational fluid dynamics with respect to three design criteria, that is, the maximization of the absolute mixing quantity, total pressure saving, and fuel penetration. A distinct Pareto optimal front has been obtained, highlighting the counteracting behavior of the total pressure against the mixing efficiency and fuel penetration. The injector location and size have been identified as the key design parameters as a result of a sensitivity analysis, with negligible influence of the porous properties in the configurations and conditions considered in the present study. Flowfield visualization has revealed the underlying physics associated with the effects of these dominant parameters on the shock structure and intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bat researchers currently use a variety of techniques that transform echolocation calls into audible frequencies and allow the spectral content of a signal to be viewed and analyzed. All techniques have limitations and an understanding of how each works and the effect on the signal being analyzed are vital for correct interpretation. The 3 most commonly used techniques for transforming frequencies of a call are heterodyne, frequency division, and time expansion. Three techniques for viewing spectral content of a signal are zero-crossing, Fourier analysis, and instantaneous frequency analysis. It is important for bat researchers to be familiar with the advantages and disadvantages of each technique.