742 resultados para Data Flows
Resumo:
Objectives: To quantify the concordance of hospital child maltreatment data with child protection service (CPS) records and identify factors associated with linkage. Methods: Multivariable logistic regression analysis was conducted following retrospective medical record review and database linkage of 884 child records from 20 hospitals and the CPS in Queensland, Australia. Results: Nearly all children with hospital assigned maltreatment codes (93.1%) had a CPS record. Of these, 85.1% had a recent notification. 29% of the linked maltreatment group (n=113) were not known to CPS prior to the hospital presentation. Almost 1/3 of children with unintentional injury hospital codes were known to CPS. Just over 24% of the linked unintentional injury group (n=34) were not known to CPS prior to the hospital presentation but became known during or after discharge from hospital. These estimates are higher than the 2006/07 annual rate of 2.39% of children being notified to CPS. Rural children were more likely to link to CPS, and children were over 3 times more likely to link if the index injury documentation included additional diagnoses or factors affecting their health. Conclusions: The system for referring maltreatment cases to CPS is generally efficient, although up to 1 in 15 children had codes for maltreatment but could not be linked to CPS data. The high proportion of children with unintentional injury codes who linked to CPS suggests clinicians and hospital-based child protection staff should be supported by further education and training to ensure children at risk are being detected by the child protection system.
Resumo:
Data preprocessing is widely recognized as an important stage in anomaly detection. This paper reviews the data preprocessing techniques used by anomaly-based network intrusion detection systems (NIDS), concentrating on which aspects of the network traffic are analyzed, and what feature construction and selection methods have been used. Motivation for the paper comes from the large impact data preprocessing has on the accuracy and capability of anomaly-based NIDS. The review finds that many NIDS limit their view of network traffic to the TCP/IP packet headers. Time-based statistics can be derived from these headers to detect network scans, network worm behavior, and denial of service attacks. A number of other NIDS perform deeper inspection of request packets to detect attacks against network services and network applications. More recent approaches analyze full service responses to detect attacks targeting clients. The review covers a wide range of NIDS, highlighting which classes of attack are detectable by each of these approaches. Data preprocessing is found to predominantly rely on expert domain knowledge for identifying the most relevant parts of network traffic and for constructing the initial candidate set of traffic features. On the other hand, automated methods have been widely used for feature extraction to reduce data dimensionality, and feature selection to find the most relevant subset of features from this candidate set. The review shows a trend toward deeper packet inspection to construct more relevant features through targeted content parsing. These context sensitive features are required to detect current attacks.
Resumo:
Acoustic sensors play an important role in augmenting the traditional biodiversity monitoring activities carried out by ecologists and conservation biologists. With this ability however comes the burden of analysing large volumes of complex acoustic data. Given the complexity of acoustic sensor data, fully automated analysis for a wide range of species is still a significant challenge. This research investigates the use of citizen scientists to analyse large volumes of environmental acoustic data in order to identify bird species. Specifically, it investigates ways in which the efficiency of a user can be improved through the use of species identification tools and the use of reputation models to predict the accuracy of users with unidentified skill levels. Initial experimental results are reported.
Resumo:
Since manually constructing domain-specific sentiment lexicons is extremely time consuming and it may not even be feasible for domains where linguistic expertise is not available. Research on the automatic construction of domain-specific sentiment lexicons has become a hot topic in recent years. The main contribution of this paper is the illustration of a novel semi-supervised learning method which exploits both term-to-term and document-to-term relations hidden in a corpus for the construction of domain specific sentiment lexicons. More specifically, the proposed two-pass pseudo labeling method combines shallow linguistic parsing and corpusbase statistical learning to make domain-specific sentiment extraction scalable with respect to the sheer volume of opinionated documents archived on the Internet these days. Another novelty of the proposed method is that it can utilize the readily available user-contributed labels of opinionated documents (e.g., the user ratings of product reviews) to bootstrap the performance of sentiment lexicon construction. Our experiments show that the proposed method can generate high quality domain-specific sentiment lexicons as directly assessed by human experts. Moreover, the system generated domain-specific sentiment lexicons can improve polarity prediction tasks at the document level by 2:18% when compared to other well-known baseline methods. Our research opens the door to the development of practical and scalable methods for domain-specific sentiment analysis.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
High levels of sitting have been linked with poor health outcomes. Previously a pragmatic MTI accelerometer data cut-point (100 count/min-1) has been used to estimate sitting. Data on the accuracy of this cut-point is unavailable. PURPOSE: To ascertain whether the 100 count/min-1 cut-point accurately isolates sitting from standing activities. METHODS: Participants fitted with an MTI accelerometer were observed performing a range of sitting, standing, light & moderate activities. 1-min epoch MTI data were matched to observed activities, then re-categorized as either sitting or not using the 100 count/min-1 cut-point. Self-report demographics and current physical activity were collected. Generalized estimating equation for repeated measures with a binary logistic model analyses (GEE), corrected for age, gender and BMI, were conducted to ascertain the odds of the MTI data being misclassified. RESULTS: Data were from 26 healthy subjects (8 men; 50% aged <25 years; mean BMI (SD) 22.7(3.8)m/kg2). MTI sitting and standing data mode was 0 count/min-1, with 46% of sitting activities and 21% of standing activities recording 0 count/min-1. The GEE was unable to accurately isolate sitting from standing activities using the 100 count/min-1 cut-point, since all sitting activities were incorrectly predicted as standing (p=0.05). To further explore the sensitivity of MTI data to delineate sitting from standing, the upper 95% confidence interval of the mean for the sitting activities (46 count/min-1) was used to re-categorise the data; this resulted in the GEE correctly classifying 49% of sitting, and 69% of standing activities. Using the 100 count/min-1 cut-point the data were re-categorised into a combined ‘sit/stand’ category and tested against other light activities: 88% of sit/stand and 87% of light activities were accurately predicted. Using Freedson’s moderate cut-point of 1952 count/min-1 the GEE accurately predicted 97% of light vs. 90% of moderate activities. CONCLUSION: The distributions of MTI recorded sitting and standing data overlap considerably, as such the 100 count/min -1 cut-point did not accurately isolate sitting from other static standing activities. The 100 count/min -1 cut-point more accurately predicted sit/stand vs. other movement orientated activities.
Resumo:
The aim of this study is to assess the potential use of Bluetooth data for traffic monitoring of arterial road networks. Bluetooth data provides the direct measurement of travel time between pairs of scanners, and intensive research has been reported on this topic. Bluetooth data includes “Duration” data, which represents the time spent by Bluetooth devices to pass through the detection range of Bluetooth scanners. If the scanners are located at signalised intersections, this Duration can be related to intersection performance, and hence represents valuable information for traffic monitoring. However the use of Duration has been ignored in previous analyses. In this study, the Duration data as well as travel time data is analysed to capture the traffic condition of a main arterial route in Brisbane. The data consists of one week of Bluetooth data provided by Brisbane City Council. As well, micro simulation analysis is conducted to further investigate the properties of Duration. The results reveal characteristics of Duration, and address future research needs to utilise this valuable data source.
Resumo:
Traffic Simulation models tend to have their own data input and output formats. In an effort to standardise the input for traffic simulations, we introduce in this paper a set of data marts that aim to serve as a common interface between the necessaary data, stored in dedicated databases, and the swoftware packages, that require the input in a certain format. The data marts are developed based on real world objects (e.g. roads, traffic lights, controllers) rather than abstract models and hence contain all necessary information that can be transformed by the importing software package to their needs. The paper contains a full description of the data marts for network coding, simulation results, and scenario management, which have been discussed with industry partners to ensure sustainability.
Resumo:
In response to the need to leverage private finance and the lack of competition in some parts of the Australian public sector major infrastructure market, especially in very large economic infrastructure procured using Pubic Private Partnerships, the Australian Federal government has demonstrated its desire to attract new sources of in-bound foreign direct investment (FDI) into the Australian construction market. This paper aims to report on progress towards an investigation into the determinants of multinational contractors’ willingness to bid for Australian public sector major infrastructure projects and which is designed to give an improved understanding of matters surrounding FDI into the Australian construction sector. This research deploys Dunning’s eclectic theory for the first time in terms of in-bound FDI by multinational contractors and as head contractors bidding for Australian major infrastructure public sector projects. Elsewhere, the authors have developed Dunning’s principal hypothesis associated with his eclectic framework in order to suit the context of this research and to address a weakness arising in Dunning’s principal hypothesis that is based on a nominal approach to the factors in the eclectic framework and which fail to speak to the relative explanatory power of these factors. In this paper, an approach to reviewing and analysing secondary data, as part of the first stage investigation in this research, is developed and some illustrations given, vis-à-vis the selected sector (roads, bridges and tunnels) in Australia (as the host location) and using one of the selected home countries (Spain). In conclusion, some tentative thoughts are offered in anticipation of the completion of the first stage investigation - in terms of the extent to which this first stage based on secondary data only might suggest the relative importance of the factors in the eclectic framework. It is noted that more robust conclusions are expected following the future planned stages of the research and these stages including primary data are briefly outlined. Finally, and beyond theoretical contributions expected from the overall approach taken to developing and testing Dunning’s framework, other expected contributions concerning research method and practical implications are mentioned.
Resumo:
Researchers are increasingly involved in data-intensive research projects that cut across geographic and disciplinary borders. Quality research now often involves virtual communities of researchers participating in large-scale web-based collaborations, opening their earlystage research to the research community in order to encourage broader participation and accelerate discoveries. The result of such large-scale collaborations has been the production of ever-increasing amounts of data. In short, we are in the midst of a data deluge. Accompanying these developments has been a growing recognition that if the benefits of enhanced access to research are to be realised, it will be necessary to develop the systems and services that enable data to be managed and secured. It has also become apparent that to achieve seamless access to data it is necessary not only to adopt appropriate technical standards, practices and architecture, but also to develop legal frameworks that facilitate access to and use of research data. This chapter provides an overview of the current research landscape in Australia as it relates to the collection, management and sharing of research data. The chapter then explains the Australian legal regimes relevant to data, including copyright, patent, privacy, confidentiality and contract law. Finally, this chapter proposes the infrastructure elements that are required for the proper management of legal interests, ownership rights and rights to access and use data collected or generated by research projects.
Resumo:
This report provides an evaluation of the current available evidence-base for identification and surveillance of product-related injuries in children in Queensland. While the focal population was children in Queensland, the identification of information needs and data sources for product safety surveillance has applicability nationally for all age groups. The report firstly summarises the data needs of product safety regulators regarding product-related injury in children, describing the current sources of information informing product safety policy and practice, and documenting the priority product surveillance areas affecting children which have been a focus over recent years in Queensland. Health data sources in Queensland which have the potential to inform product safety surveillance initiatives were evaluated in terms of their ability to address the information needs of product safety regulators. Patterns in product-related injuries in children were analysed using routinely available health data to identify areas for future intervention, and the patterns in product-related injuries in children identified in health data were compared to those identified by product safety regulators. Recommendations were made for information system improvements and improved access to and utilisation of health data for more proactive approaches to product safety surveillance in the future.
Resumo:
Assurance of learning is a predominant feature in both quality enhancement and assurance in higher education. Assurance of learning is a process that articulates explicit program outcomes and standards, and systematically gathers evidence to determine the extent to which performance matches expectations. Benefits accrue to the institution through the systematic assessment of whole of program goals. Data may be used for continuous improvement, program development, and to inform external accreditation and evaluation bodies. Recent developments, including the introduction of the Tertiary Education and Quality Standards Agency (TEQSA) will require universities to review the methods they use to assure learning outcomes. This project investigates two critical elements of assurance of learning: 1. the mapping of graduate attributes throughout a program; and 2. the collection of assurance of learning data. An audit was conducted with 25 of the 39 Business Schools in Australian universities to identify current methods of mapping graduate attributes and for collecting assurance of learning data across degree programs, as well as a review of the key challenges faced in these areas. Our findings indicate that external drivers like professional body accreditation (for example: Association to Advance Collegiate Schools of Business (AACSB)) and TEQSA are important motivators for assuring learning, and those who were undertaking AACSB accreditation had more robust assurance of learning systems in place. It was reassuring to see that the majority of institutions (96%) had adopted an embedding approach to assuring learning rather than opting for independent standardised testing. The main challenges that were evident were the development of sustainable processes that were not considered a burden to academic staff, and obtainment of academic buy in to the benefits of assuring learning per se rather than assurance of learning being seen as a tick box exercise. This cultural change is the real challenge in assurance of learning practice.
Resumo:
This paper argues for a renewed focus on statistical reasoning in the beginning school years, with opportunities for children to engage in data modelling. Some of the core components of data modelling are addressed. A selection of results from the first data modelling activity implemented during the second year (2010; second grade) of a current longitudinal study are reported. Data modelling involves investigations of meaningful phenomena, deciding what is worthy of attention (identifying complex attributes), and then progressing to organising, structuring, visualising, and representing data. Reported here are children's abilities to identify diverse and complex attributes, sort and classify data in different ways, and create and interpret models to represent their data.
Resumo:
Data flow analysis techniques can be used to help assess threats to data confidentiality and integrity in security critical program code. However, a fundamental weakness of static analysis techniques is that they overestimate the ways in which data may propagate at run time. Discounting large numbers of these false-positive data flow paths wastes an information security evaluator's time and effort. Here we show how to automatically eliminate some false-positive data flow paths by precisely modelling how classified data is blocked by certain expressions in embedded C code. We present a library of detailed data flow models of individual expression elements and an algorithm for introducing these components into conventional data flow graphs. The resulting models can be used to accurately trace byte-level or even bit-level data flow through expressions that are normally treated as atomic. This allows us to identify expressions that safely downgrade their classified inputs and thereby eliminate false-positive data flow paths from the security evaluation process. To validate the approach we have implemented and tested it in an existing data flow analysis toolkit.