310 resultados para Copper Oxides--Microscopic Examination
Resumo:
Copper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm−2) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the NO bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene.
Resumo:
The uniform growth of copper oxide nanowires on the top of copper plate has been investigated during the exposure to radiofrequency plasma discharge in respect to plasma properties and its localization. The copper samples of 10 mm radius and 1 mm in thickness were exposed to argon-oxygen plasma created at discharge power of 150 W. After 10 min, almost uniform growth of nanowires was achieved over large surface. There were significant distortions in nanowire length and shape near the edges. Based on the experimental results, we developed a theoretical model, which took into account a balance in heat released at the flow of the current to the nanowire and rejected from the nanowire. This model established a dependence of the maximal length of the nanowire at dependence on the plasma parameters, where the limiting factor for nanowire growth and distortions in distribution are ballistic effects of ions and their local fluxes. In contrast, the plasma heating by potential interactions of species has very little influence on the length and smaller deviations in flux are allowed for uniformity of growth
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.
Resumo:
Introduction The Skin Self-Examination Attitude Scale (SSEAS) is a brief measure that allows for the assessment of attitudes in relation to skin self-examination. This study evaluated the psychometric properties of the SSEAS using Item Response Theory (IRT) methods in a large sample of men ≥ 50 years in Queensland, Australia. Methods A sample of 831 men (420 intervention and 411 control) completed a telephone assessment at the 13-month follow-up of a randomized-controlled trial of a video-based intervention to improve skin self-examination (SSE) behaviour. Descriptive statistics (mean, standard deviation, item–total correlations, and Cronbach’s alpha) were compiled and difficulty parameters were computed with Winsteps using the polytomous Rasch Rating Scale Model (RRSM). An item person (Wright) map of the SSEAS was examined for content coverage and item targeting. Results The SSEAS have good psychometric properties including good internal consistency (Cronbach’s alpha = 0.80), fit with the model and no evidence for differential item functioning (DIF) due to experimental trial grouping was detected. Conclusions The present study confirms the SSEA scale as a brief, useful and reliable tool for assessing attitudes towards skin self-examination in a population of men 50 years or older in Queensland, Australia. The 8-item scale shows unidimensionality, allowing levels of SSE attitude, and the item difficulties, to be ranked on a single continuous scale. In terms of clinical practice, it is very important to assess skin cancer self-examination attitude to identify people who may need a more extensive intervention to allow early detection of skin cancer.
Resumo:
Background This paper examines changing patterns in the utilisation and geographic access to health services in Great Britain using National Travel Survey data (1985-2012). The National Travel Survey (NTS) is a series of household surveys designed to provide data on personal travel and monitor changes in travel behaviour over time. The utilisation rate was derived using the proportion of journeys made to access health services. Geographic access was analysed by separating the concept into its accessibility and mobility dimensions. Methods Variables from the PSU, households, and individuals datasets were used as explanatory variables. Whereas, variables extracted from the journeys dataset were used as dependent variables to identify patterns of utilisation i.e. the proportion of journeys made by different groups to access health facilities in a particular journey distance or time band or by mode of transport; and geographic access to health services. A binary logistic regression analysis was conducted to identify the utilisation rate over the different time periods between different groups. This analysis shows the Odds Ratios (ORs) for different groups making a trip to utilise health services compared to their respective counterparts. Linear multiple regression analyses were conducted to then identify patterns of change in the accessibility and mobility level. Results Analysis of the data has shown that that journey distances to health facilities were signi fi cantly shorter and also gradually reduced over the period in question for Londoners, females, those without a car or on low incomes, and older people. Although rates of utilisation of health services we re Oral Abstracts / Journal of Transport & Health 2 (2015) S5 – S63 S43 signi fi cantly lower because of longer journey times. These fi ndings indicate that the rate of utilisation of health services largely depends on mobility level although previous research studies have traditionally overlooked the mobility dimension. Conclusions This fi nding, therefore, suggests the need to improve geographic access to services together with an enhanced mobility option for disadvantaged groups in order for them to have improved levels of access to health facilities. This research has also found that the volume of car trips to health services also increased steadily over the period 1985-2012 while all other modes accounted for a smaller number of trips. However, it is dif fi cult to conclude from this research whether this increase in the volume of car trips was due to a lack of alternative transport or due to an increase in the level of car-ownership.
Resumo:
Despite the growing attention innovation ecosystems have received from scholars and practitioners, rather little is known about the crucial birth and expansion phases that these ecosystems experience. Through a single case in the complex product system (CoPS) environment, this paper investigates the development of an innovation ecosystem between 1980 and 2007. The findings demonstrate that the ecosystem’s birth phase includes sub-phases, namely, invention and start-up, where the ecosystem is reconfigured to find the appropriate form and the proper actors to satisfy the first customer’s requirements. Moreover, the duration of the expansion phase is found to be remarkably long, suggesting that within the CoPS setting, expansion may also include two or more sub-phases.
Resumo:
This doctoral studies focused on the development of new materials for efficient use of solar energy for environmental applications. The research investigated the engineering of the band gap of semiconductor materials to design and optimise visible-light-sensitive photocatalysts. Experimental studies have been combined with computational simulation in order to develop predictive tools for a systematic understanding and design on the crystal and energy band structures of multi-component metal oxides.
Resumo:
Health Assessment and Physical Examination is designed to teach students to assess a patient’s physical, psychological, cultural and emotional dimensions of health as a foundation of nursing care. The skills of interviewing, inspection, percussion, palpation, auscultation, and documentation are refined to help students to make clinical judgements and promote healthy patient outcomes. A strong emphasis on science encompasses all the technical aspects of anatomy, physiology, and assessment, while highlighting clinically relevant information. Emphasis on caring is displayed through themes of assessment of the whole person, which also encourages nurses to think about care for themselves as well as patients.
Resumo:
The application of mesoporous silica nanospheres (MSNs) loaded with drugs/growth factors to induce osteogenic differentiation of stem cells has been trialed by a number of researchers recently. However, limitations such as high cost, complex fabrication and unintended side effects from supraphysiological concentrations of the drugs/growth factors represent major obstacles to any potential clinical application in the near term. In this study we reported an in situ one-pot synthesis strategy of MSNs doped with hypoxia-inducing copper ions and systematically evaluated the nanospheres by in vitro biological assessments. The Cu-containing mesoporous silica nanospheres (Cu-MSNs) had uniform spherical morphology (∼100 nm), ordered mesoporous channels (∼2 nm) and homogeneous Cu distribution. Cu-MSNs demonstrated sustained release of both silicon (Si) and Cu ions and controlled degradability. The Cu-MSNs were phagocytized by immune cells and appeared to modulate a favorable immune environment by initiating proper pro-inflammatory cytokines, inducing osteogenic/angiogenic factors and suppressing osteoclastogenic factors by the immune cells. The immune microenvironment induced by the Cu-MSNs led to robust osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via the activation of Oncostation M (OSM) pathway. These results suggest that the novel Cu-MSNs could be used as an immunomodulatory agent with osteostimulatory capacity for bone regeneration/therapy application. Statement of significance In order to stimulate both osteogenesis and angiogenesis of stem cells for further bone regeneration, a new kind of hypoxia-inducing copper doped mesoporous silica nanospheres (Cu-MSNs) were prepared via one-pot synthesis. Biological assessments under immune environment which better reflect the in vivo response revealed that the nanospheres possessed osteostimulatory capacity and had potential as immunomodulatory agent for bone regeneration/therapy application. The strategy of introducing controllable amount of therapeutic ions instead of loading expensive drugs/growth factors in mesoporous silica nanosphere provides new options for bioactive nanomaterial functionalization.
Resumo:
Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.
Resumo:
Aim: To explore the role and needs of the family carer across different acute care contexts and their level of involvement in the care of their relative with dementia in this setting. Method: A pragmatic, exploratory-descriptive qualitative approach. A convenience sample of 30 family carers across three sites completed semi-structured interviews. Results: Family carers wanted to be involved in the acute care of their family member with dementia. They acknowledged the importance of a central source of information, educated staff, guidelines on roles and processes, and positive communication, as well as respect from staff for the carer’s knowledge of the older person and their needs. They also highlighted the need for medical staff to discuss with them the family member’s treatment and care. Conclusion: There is a need for family-focused interventions to improve communication and involvement of family in the care of family members with dementia in the acute setting.
Examination of a scale assessing attitudes towards individuals with intellectual disability in China
Resumo:
This study examined the applicability of the four-factor structure of the short form of the Community Living Attitudes Scale-Intellectual disability1 (CLAS-ID) in China, using a sample of 325 Chinese community members. Confirmatory factor analysis revealed that the original structure of the short form of the CLAS-ID did not adequately fit the data from the current sample. Most items of the Exclusion and Similarity subscales were retained while items on the Empowerment and Sheltering subscales were removed. Chinese community members held generally positive attitudes towards people with intellectual disability. However, a measurement tool originating from the Chinese context is needed to provide a better understanding of attitudes towards individuals with intellectual disability in mainland China.
Resumo:
The oxides of cobalt have recently been shown to be highly effective electrocatalysts for the oxygen evolution reaction (OER) under alkaline conditions. In general species such as Co3O4 and CoOOH have been investigated that often require an elevated temperature step during their synthesis to create crystalline materials. In this work we investigate the rapid and direct electrochemical formation of amorphous nanostructured Co(OH)2 on gold electrodes under room temperture conditions which is a highly active precursor for the OER. During the OER some conversion to crystalline Co3O4 occurs at the surface, but the bulk of the material remains amorphous. It is found that the underlying gold electrode is crucial to the materials enhanced performance and provides higher current density than can be achieved using carbon, palladium or copper support electrodes. This catalyst exhibits excellent activity with a current density of 10 mA cm-2 at an overpotential of 360 mV with a high turnover frequency of 2.1 s-1 in 1 M NaOH. A Tafel slope of 56 mV dec-1 at low overpotentials and a slope of 122 mV dec-1 at high overpotentials is consistent with the dual barrier model for the electrocatalytic evolution of oxygen. Significantly, the catalyst maintains excellent activity for up to 24 hr of continuous operation and this approach offers a facile way to create a highly effective and stable material.
Resumo:
Successful healing of long bone fractures is dependent on the mechanical environment created within the fracture, which in turn is dependent on the fixation strategy. Recent literature reports have suggested that locked plating devices are too stiff to reliably promote healing. However, in vitro testing of these devices has been inconsistent in both method of constraint and reported outcomes, making comparisons between studies and the assessment of construct stiffness problematic. Each of the methods previously used in the literature were assessed for their effect on the bending of the sample and concordant stiffness. The choice of outcome measures used in in vitro fracture studies was also assessed. Mechanical testing was conducted on seven hole locked plated constructs in each method for comparison. Based on the assessment of each method the use of spherical bearings, ball joints or similar is suggested at both ends of the sample. The use of near and far cortex movement was found to be more comprehensive and more accurate than traditional centrally calculated inter fragmentary movement values; stiffness was found to be highly susceptible to the accuracy of deformation measurements and constraint method, and should only be used as a within study comparison method. The reported stiffness values of locked plate constructs from in vitro mechanical testing is highly susceptible to testing constraints and output measures, with many standard techniques overestimating the stiffness of the construct. This raises the need for further investigation into the actual mechanical behaviour within the fracture gap of these devices.
Resumo:
Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.